
Advanced  
Front-End 
Development

Building Scalable and High-Performance  
Web Applications with React
—
Nitesh Upadhyaya



Advanced Front-End 
Development

Building Scalable and  
High-Performance Web 
Applications with React

Nitesh Upadhyaya



Advanced Front-End Development: Building Scalable and  

High-Performance Web Applications with React

ISBN-13 (pbk): 979-8-8688-1317-7		  ISBN-13 (electronic): 979-8-8688-1318-4
https://doi.org/10.1007/979-8-8688-1318-4

Copyright © 2025 by Nitesh Upadhyaya

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or 
part of the material is concerned, specifically the rights of translation, reprinting, reuse of 
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, 
and transmission or information storage and retrieval, electronic adaptation, computer software, 
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark 
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, 
and images only in an editorial fashion and to the benefit of the trademark owner, with no 
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if 
they are not identified as such, is not to be taken as an expression of opinion as to whether or not 
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of 
publication, neither the authors nor the editors nor the publisher can accept any legal 
responsibility for any errors or omissions that may be made. The publisher makes no warranty, 
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Anandadeep Roy
Editorial Assistant: Kripa Joseph

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 
New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201) 
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, 
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media 
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for 
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook 
versions and licenses are also available for most titles. For more information, reference our Print 
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is 
available to readers on GitHub. For more detailed information, please visit https://www.apress.
com/gp/services/source-code.

If disposing of this product, please recycle the paper

Nitesh Upadhyaya
Lutz, FL, USA

https://doi.org/10.1007/979-8-8688-1318-4


I dedicate this book to my family, whose unwavering  
love and support have been the cornerstone of my  

journey. To my spouse, who has stood by me with patience 
and encouragement during the countless hours spent  
writing and researching, and to my children, whose  

curiosity and boundless energy remind me every day of  
the importance of learning and growth—this work is a  
testament to the inspiration you provide. I am deeply  

grateful to my mentors and colleagues, who have guided me 
with their wisdom and shared invaluable insights, shaping 
my professional path. To aspiring developers and learners, 
this book is written with you in mind, with the hope that  
it serves as a resource and a source of inspiration as you 

explore the ever-evolving world of React and web  
development. I also extend my gratitude to the open  
source community, whose collaborative spirit and  

innovative contributions have enriched the industry  
and motivated me to give back in the form of this book. 

Lastly, to everyone who has shared their knowledge  
selflessly, both in person and online, your generosity  

has been instrumental in shaping this work. This book  
is for all of you—those who believe in the power of  

education, collaboration, and innovation.



v

Table of Contents

About the Author��������������������������������������������������������������������������������xix

About the Technical Reviewers����������������������������������������������������������xxi

Introduction��������������������������������������������������������������������������������������xxiii

Chapter 1: ��Introduction to React�����������������������������������������������������������1

What Is React?�������������������������������������������������������������������������������������������������������1

A Brief History of React������������������������������������������������������������������������������������������3

Why Use React?�����������������������������������������������������������������������������������������������������3

Component-Based Architecture�����������������������������������������������������������������������3

Benefits of Component-Based Architecture�����������������������������������������������������6

Complex Applications Made Simple�����������������������������������������������������������������6

Virtual DOM for Performance���������������������������������������������������������������������������������7

What Is the DOM?���������������������������������������������������������������������������������������������8

What Is Virtual DOM?����������������������������������������������������������������������������������������8

Benefits of the Virtual DOM������������������������������������������������������������������������������9

Visualizing the Process�����������������������������������������������������������������������������������10

Declarative Syntax�����������������������������������������������������������������������������������������������11

Declarative vs. Imperative������������������������������������������������������������������������������11

Why Declarative Syntax Is Important��������������������������������������������������������������12

React Hooks���������������������������������������������������������������������������������������������������������13

Why Are Hooks Important?�����������������������������������������������������������������������������13

Core Concepts of React Hooks�����������������������������������������������������������������������13

Custom Hooks������������������������������������������������������������������������������������������������15



vi

React vs. Other Frameworks��������������������������������������������������������������������������������17

The Structure of a React Application�������������������������������������������������������������������18

What You’ll Learn in This Book�����������������������������������������������������������������������������19

Summary�������������������������������������������������������������������������������������������������������������20

Chapter 2: ��Setting Up Your Development Environment�����������������������21

Installing Node.js and npm����������������������������������������������������������������������������������22

Download and Install Node.js�������������������������������������������������������������������������22

Verify Installation��������������������������������������������������������������������������������������������23

Updating Node.js and npm�����������������������������������������������������������������������������24

Creating a React App with create-react-app�������������������������������������������������������25

Create Your First React App����������������������������������������������������������������������������25

What create-react-app Does��������������������������������������������������������������������������27

Understanding the Project Structure��������������������������������������������������������������27

Run the Development Server��������������������������������������������������������������������������28

Stopping the Server����������������������������������������������������������������������������������������30

Alternative Setup with Vite�����������������������������������������������������������������������������������31

Install Vite and Create a Project���������������������������������������������������������������������31

Run the Vite Development Server�������������������������������������������������������������������32

Comparison Between Vite and create-react-app�������������������������������������������34

Essential Tools for React Development����������������������������������������������������������������35

Visual Studio Code (VS Code)�������������������������������������������������������������������������35

Recommended Extensions for React Development����������������������������������������36

Setting Up Git for Version Control�������������������������������������������������������������������������37

Download and Install Git���������������������������������������������������������������������������������37

Initial Git Configuration�����������������������������������������������������������������������������������38

Initialize a Git Repository��������������������������������������������������������������������������������38

Basic Git Workflow�����������������������������������������������������������������������������������������39

Summary�������������������������������������������������������������������������������������������������������������41

Table of Contents



vii

Chapter 3: ��Components, Props, and State�������������������������������������������43

Introduction to Components���������������������������������������������������������������������������������43

Types of Components in React�����������������������������������������������������������������������������44

Functional Components����������������������������������������������������������������������������������44

Class Components������������������������������������������������������������������������������������������46

Props: Passing Data to Components��������������������������������������������������������������������48

State: Managing Component Data�����������������������������������������������������������������������52

Using State in Functional Components�����������������������������������������������������������52

Using State in Class Components�������������������������������������������������������������������53

Differences Between Props and State�����������������������������������������������������������������55

Best Practices for Using Props and State������������������������������������������������������������57

Example: Building a Simple User List Application������������������������������������������������58

Summary�������������������������������������������������������������������������������������������������������������63

Chapter 4: ��JSX and Element Rendering�����������������������������������������������67

Introduction to JSX�����������������������������������������������������������������������������������������������67

Basic Rules of JSX�����������������������������������������������������������������������������������������������68

Rendering Elements���������������������������������������������������������������������������������������������71

Rendering a Single Element���������������������������������������������������������������������������72

Rendering Multiple Elements�������������������������������������������������������������������������72

React’s Efficient Rendering����������������������������������������������������������������������������73

Embedding JavaScript Expressions in JSX����������������������������������������������������������74

Embedding Variables��������������������������������������������������������������������������������������74

Conditional Rendering������������������������������������������������������������������������������������75

Calling Functions��������������������������������������������������������������������������������������������75

Using Props for Dynamic Rendering��������������������������������������������������������������������76

Table of Contents



viii

Advanced JSX Techniques�����������������������������������������������������������������������������������78

React Fragments for Grouping Elements��������������������������������������������������������78

Inline Styling in JSX����������������������������������������������������������������������������������������79

Applying CSS Classes in JSX��������������������������������������������������������������������������79

Using JSX Spread Attributes���������������������������������������������������������������������������80

Conditional Rendering with the Logical AND (&&) Operator���������������������������80

Rendering Lists of Elements���������������������������������������������������������������������������81

Example: Building a User Dashboard Application������������������������������������������������81

Features���������������������������������������������������������������������������������������������������������82

Summary�������������������������������������������������������������������������������������������������������������87

Chapter 5: ��Handling Events and Conditional Rendering����������������������89

Introduction to Event Handling�����������������������������������������������������������������������������90

Event Handling in Functional Components����������������������������������������������������������90

Event Handling in Class Components������������������������������������������������������������������92

Passing Parameters to Event Handlers����������������������������������������������������������������93

Why Use Arrow Functions for Passing Parameters?��������������������������������������94

Passing Multiple Parameters��������������������������������������������������������������������������95

Conditional Rendering������������������������������������������������������������������������������������������96

Using if Statements����������������������������������������������������������������������������������������96

Using the Ternary Operator�����������������������������������������������������������������������������97

Using the Logical && Operator�����������������������������������������������������������������������98

Creating Reusable Functions for Component Behavior����������������������������������������99

Example: Building an Interactive Login Form�����������������������������������������������������100

Summary�����������������������������������������������������������������������������������������������������������105

Table of Contents



ix

Chapter 6: ��Lists and Keys������������������������������������������������������������������107

Introduction to Lists in React�����������������������������������������������������������������������������107

Rendering Lists in React������������������������������������������������������������������������������������108

Rendering Objects with Lists������������������������������������������������������������������������108

Understanding Keys in React�����������������������������������������������������������������������������109

Dynamic Lists: Adding, Removing, and Updating Items�������������������������������������111

Nested Lists and Complex Data Structures��������������������������������������������������������113

Recursive Rendering for Deeply Nested Structures�������������������������������������116

Best Practices for Managing Lists and Keys������������������������������������������������119

Advanced Techniques: Lazy Rendering and Virtualized Lists�����������������������������119

Lazy Loading in React����������������������������������������������������������������������������������120

Virtualization of Large Lists��������������������������������������������������������������������������121

When to Use Lazy Loading and Virtualization�����������������������������������������������122

Example: Product List with Add-to-Cart Functionality���������������������������������������123

Summary�����������������������������������������������������������������������������������������������������������126

Chapter 7: ��Thinking in Components��������������������������������������������������127

Understanding Components�������������������������������������������������������������������������������127

Why Adopt a Component-Based Approach?�������������������������������������������������������128

Steps to Think in Components���������������������������������������������������������������������������129

Types of Components�����������������������������������������������������������������������������������������131

Functional Components��������������������������������������������������������������������������������132

Class Components����������������������������������������������������������������������������������������132

Reusability and Composition������������������������������������������������������������������������������133

Best Practices for Component Design���������������������������������������������������������������135

Example: Designing a Shopping Cart Page��������������������������������������������������������136

Header Component���������������������������������������������������������������������������������������136

Product Component��������������������������������������������������������������������������������������137

Table of Contents



x

ProductList Component��������������������������������������������������������������������������������137

CartSummary Component����������������������������������������������������������������������������138

Composing the Page�������������������������������������������������������������������������������������138

Common Challenges When Thinking in Components�����������������������������������������140

Summary�����������������������������������������������������������������������������������������������������������141

Chapter 8: ��Styling Your Application���������������������������������������������������143

Importance of Styling in React Applications������������������������������������������������������143

Adding Styles Using Traditional CSS������������������������������������������������������������������145

Pros of Using Traditional CSS�����������������������������������������������������������������������146

Cons of Using Traditional CSS�����������������������������������������������������������������������146

Inline Styling in React����������������������������������������������������������������������������������������147

Pros of Inline Styling�������������������������������������������������������������������������������������148

Cons of Inline Styling������������������������������������������������������������������������������������149

CSS Modules������������������������������������������������������������������������������������������������������149

How CSS Modules Work�������������������������������������������������������������������������������150

Pros of CSS Modules������������������������������������������������������������������������������������151

Cons of CSS Modules�����������������������������������������������������������������������������������151

CSS-in-JS Libraries��������������������������������������������������������������������������������������������152

Dynamic Styling��������������������������������������������������������������������������������������������153

Theming Support������������������������������������������������������������������������������������������154

Using Preprocessors (SCSS/SASS)��������������������������������������������������������������������155

Features of SCSS/SASS��������������������������������������������������������������������������������156

How to Use SCSS/SASS in React������������������������������������������������������������������158

Styling with Frameworks (Bootstrap, Tailwind)��������������������������������������������������159

Responsive Design Techniques��������������������������������������������������������������������������161

Best Practices for Styling�����������������������������������������������������������������������������������164

Summary�����������������������������������������������������������������������������������������������������������165

Table of Contents



xi

Chapter 9: ��Lifecycle Methods and Hooks������������������������������������������167

Understanding the Component Lifecycle�����������������������������������������������������������168

Lifecycle Methods in Class Components�����������������������������������������������������������169

Mounting Phase��������������������������������������������������������������������������������������������169

Updating Phase��������������������������������������������������������������������������������������������171

Unmounting Phase���������������������������������������������������������������������������������������171

Hooks for Functional Components���������������������������������������������������������������������172

Using useEffect for Side Effects�������������������������������������������������������������������172

Managing State with useState���������������������������������������������������������������������174

Advanced Hooks for Lifecycle Scenarios�����������������������������������������������������������175

Example: A Timer Component with Cleanup������������������������������������������������������176

Common Challenges and Solutions�������������������������������������������������������������������179

Best Practices for Lifecycle Management����������������������������������������������������������180

Summary�����������������������������������������������������������������������������������������������������������180

Chapter 10: ��Managing State with Context and Redux�����������������������183

Understanding State Management in React������������������������������������������������������183

React Context API�����������������������������������������������������������������������������������������������184

Introduction to Redux Toolkit�����������������������������������������������������������������������������187

Core Features of Redux Toolkit���������������������������������������������������������������������187

Connecting Redux Toolkit with React Components��������������������������������������������191

Comparing Context API and Redux Toolkit���������������������������������������������������������193

Best Practices for State Management���������������������������������������������������������������193

Example: Building a Shopping Cart with Redux Toolkit��������������������������������������194

Step 1: Define the Cart Slice�������������������������������������������������������������������������194

Step 2: Configure the Store��������������������������������������������������������������������������196

Step 3: Provide the Store to the Application�������������������������������������������������196

Step 4: Build the Shopping Cart Component������������������������������������������������197

Summary�����������������������������������������������������������������������������������������������������������201

Table of Contents



xii

Chapter 11: ��Form Handling and Validation����������������������������������������203

Controlled vs. Uncontrolled Components�����������������������������������������������������������203

Controlled Components��������������������������������������������������������������������������������203

Uncontrolled Components����������������������������������������������������������������������������205

Handling User Input�������������������������������������������������������������������������������������������206

OnChange Event�������������������������������������������������������������������������������������������207

OnSubmit Event��������������������������������������������������������������������������������������������208

Combined Event�������������������������������������������������������������������������������������������209

Event Object�������������������������������������������������������������������������������������������������211

Form Validation��������������������������������������������������������������������������������������������������212

Client-Side Validation�����������������������������������������������������������������������������������212

Real-Time Validation�������������������������������������������������������������������������������������214

Using Third-Party Libraries��������������������������������������������������������������������������������216

Formik����������������������������������������������������������������������������������������������������������216

React Hook Form������������������������������������������������������������������������������������������218

Example: Checkout Form�����������������������������������������������������������������������������������220

Summary�����������������������������������������������������������������������������������������������������������224

Chapter 12: ��Routing and Navigation��������������������������������������������������227

Understanding Routing in SPAs�������������������������������������������������������������������������228

How SPAs Handle Routing����������������������������������������������������������������������������228

Setting Up React Router�������������������������������������������������������������������������������������229

Core Concepts of React Router��������������������������������������������������������������������������231

Route Matching��������������������������������������������������������������������������������������������232

Navigating Between Pages���������������������������������������������������������������������������233

Nested Routes����������������������������������������������������������������������������������������������������234

Protected Routes������������������������������������������������������������������������������������������������236

Table of Contents



xiii

Lazy Loading Routes������������������������������������������������������������������������������������������237

Error Handling����������������������������������������������������������������������������������������������������239

Example: Simple Blog Navigation with React Router�����������������������������������������241

Page Implementations����������������������������������������������������������������������������������243

Summary�����������������������������������������������������������������������������������������������������������246

Chapter 13: ��Optimizing Performance������������������������������������������������247

Understanding React’s Rendering Behavior�������������������������������������������������������247

Symptoms of Bottlenecks�����������������������������������������������������������������������������248

Tools for Identifying Bottlenecks������������������������������������������������������������������249

Preventing Unnecessary Re-renders�����������������������������������������������������������������249

React.memo�������������������������������������������������������������������������������������������������249

useCallback and useMemo��������������������������������������������������������������������������250

Code Splitting and Lazy Loading������������������������������������������������������������������������252

Optimizing State Management���������������������������������������������������������������������������254

Avoiding Deeply Nested State����������������������������������������������������������������������254

Using Selectors in Redux������������������������������������������������������������������������������254

Optimizing Large Lists���������������������������������������������������������������������������������������255

Virtualization�������������������������������������������������������������������������������������������������256

Optimizing Images and Media���������������������������������������������������������������������������257

Lazy Loading Images������������������������������������������������������������������������������������257

Responsive Images��������������������������������������������������������������������������������������258

Network Performance����������������������������������������������������������������������������������������259

Caching with React Query����������������������������������������������������������������������������259

Prefetching Data�������������������������������������������������������������������������������������������261

Summary�����������������������������������������������������������������������������������������������������������262

Table of Contents



xiv

Chapter 14: ��Testing Your Application������������������������������������������������265

Why Testing Matters�������������������������������������������������������������������������������������������265

The Testing Pyramid�������������������������������������������������������������������������������������266

Setting Up a Testing Environment����������������������������������������������������������������������267

Configuring Jest�������������������������������������������������������������������������������������������268

Configuring React Testing Library����������������������������������������������������������������268

Configuring Cypress�������������������������������������������������������������������������������������269

Unit Testing��������������������������������������������������������������������������������������������������������269

Integration Testing���������������������������������������������������������������������������������������������271

End-to-End Testing���������������������������������������������������������������������������������������������272

Snapshot Testing������������������������������������������������������������������������������������������������274

How Snapshot Testing Works�����������������������������������������������������������������������276

Mocking and Stubbing���������������������������������������������������������������������������������������276

Mocking API Calls�����������������������������������������������������������������������������������������277

Summary�����������������������������������������������������������������������������������������������������������279

Chapter 15: ��Security Best Practices��������������������������������������������������281

Common Security Risks in React Applications��������������������������������������������������282

Cross-Site Scripting (XSS)����������������������������������������������������������������������������282

Cross-Site Request Forgery (CSRF)��������������������������������������������������������������282

Sensitive Data Exposure�������������������������������������������������������������������������������283

Insecure API Endpoints���������������������������������������������������������������������������������283

Securing React Components������������������������������������������������������������������������������283

Sanitizing User Inputs�����������������������������������������������������������������������������������284

Escaping Output�������������������������������������������������������������������������������������������285

Authentication and Authorization�����������������������������������������������������������������������287

Secure Authentication����������������������������������������������������������������������������������287

Role-Based Access Control (RBAC)��������������������������������������������������������������288

Table of Contents



xv

Securing API Requests���������������������������������������������������������������������������������������291

Using HTTPS�������������������������������������������������������������������������������������������������291

Securing Tokens�������������������������������������������������������������������������������������������292

Preventing CSRF Attacks������������������������������������������������������������������������������292

Example: CSRF Token Implementation���������������������������������������������������������293

Data Protection��������������������������������������������������������������������������������������������������293

Encryption����������������������������������������������������������������������������������������������������293

Masking Sensitive Information���������������������������������������������������������������������294

Dependency Management���������������������������������������������������������������������������������295

Secure Deployment��������������������������������������������������������������������������������������������296

Security Testing��������������������������������������������������������������������������������������������������297

Static Analysis Tools�������������������������������������������������������������������������������������297

Penetration Testing���������������������������������������������������������������������������������������298

Conducting Penetration Testing��������������������������������������������������������������������299

Summary�����������������������������������������������������������������������������������������������������������300

Chapter 16: ��Accessibility and Internationalization���������������������������301

Introduction to Accessibility and Internationalization����������������������������������������302

Implementing Accessibility in React������������������������������������������������������������������303

Testing for Accessibility�������������������������������������������������������������������������������������307

Writing Automated Tests for Accessibility����������������������������������������������������308

Internationalization (i18n) in React��������������������������������������������������������������������310

Setting Up react-i18next������������������������������������������������������������������������������311

Summary�����������������������������������������������������������������������������������������������������������315

Chapter 17: ��Deployment and Continuous Integration������������������������317

Preparing Your React App for Deployment���������������������������������������������������������318

Optimizing for Production�����������������������������������������������������������������������������319

Setting Up Environment Variables����������������������������������������������������������������320

Creating a Build��������������������������������������������������������������������������������������������321

Table of Contents



xvi

Deployment Platforms���������������������������������������������������������������������������������������322

Popular Deployment Platforms���������������������������������������������������������������������323

Deploying to Netlify��������������������������������������������������������������������������������������323

Deploying to Vercel���������������������������������������������������������������������������������������324

Continuous Integration and Deployment (CI/CD)������������������������������������������������326

What Is CI/CD?����������������������������������������������������������������������������������������������326

Setting Up CI/CD with GitHub Actions�����������������������������������������������������������326

Automating Tests and Builds������������������������������������������������������������������������330

Monitoring and Error Tracking in Production�����������������������������������������������������331

Setting Up Sentry for Error Tracking�������������������������������������������������������������332

Summary�����������������������������������������������������������������������������������������������������������334

Chapter 18: ��Integrating Third-Party Services and APIs���������������������337

Introduction to Third-Party Services������������������������������������������������������������������338

Why Use Third-Party Services?��������������������������������������������������������������������338

Examples of Popular Services����������������������������������������������������������������������338

Working with REST APIs�������������������������������������������������������������������������������������339

Fetching Data with fetch �����������������������������������������������������������������������������339

Using Axios for Fetching Data�����������������������������������������������������������������������342

Handling API Errors Gracefully����������������������������������������������������������������������344

GraphQL Integration�������������������������������������������������������������������������������������������346

What Is GraphQL?�����������������������������������������������������������������������������������������347

Payment Gateway Integration����������������������������������������������������������������������������351

Integrating Firebase with React�������������������������������������������������������������������������355

Summary�����������������������������������������������������������������������������������������������������������358

Table of Contents



xvii

Chapter 19: ��Advanced Component Patterns��������������������������������������361

Higher-Order Components (HOCs)����������������������������������������������������������������������362

Use Cases and Limitations���������������������������������������������������������������������������363

Render Props�����������������������������������������������������������������������������������������������������364

Comparing Render Props with HOCs������������������������������������������������������������366

Compound Components�������������������������������������������������������������������������������������366

Controlled and Uncontrolled Components���������������������������������������������������������369

Custom Hooks����������������������������������������������������������������������������������������������������371

Summary�����������������������������������������������������������������������������������������������������������374

Chapter 20: ��Building a Real-World Retail Store App�������������������������377

Setting Up the Project����������������������������������������������������������������������������������������378

Folder Structure��������������������������������������������������������������������������������������������379

Why This Structure?�������������������������������������������������������������������������������������381

Adding Mock Data����������������������������������������������������������������������������������������������381

Creating the Mock Data File�������������������������������������������������������������������������381

Organizing Product Images��������������������������������������������������������������������������������383

How Mock Data Fits into the App�����������������������������������������������������������������383

Building Core Pages and Components���������������������������������������������������������������384

Product Page (Home)������������������������������������������������������������������������������������384

Product Card�������������������������������������������������������������������������������������������������385

Product Details Page������������������������������������������������������������������������������������387

State Management with Redux��������������������������������������������������������������������������389

Setting Up Redux�����������������������������������������������������������������������������������������������390

1. �Creating the Store������������������������������������������������������������������������������������390

2. �Creating the Retail Slice���������������������������������������������������������������������������391

3. �Connecting Redux to the App�������������������������������������������������������������������393

Table of Contents



xviii

Checkout with Stripe������������������������������������������������������������������������������������������394

1. �Installing Stripe Dependencies�����������������������������������������������������������������394

2. �Cart Page��������������������������������������������������������������������������������������������������395

3. �Creating the Checkout Page���������������������������������������������������������������������399

4. �Creating the Checkout Form���������������������������������������������������������������������401

Routing���������������������������������������������������������������������������������������������������������������404

Adding Routes����������������������������������������������������������������������������������������������404

Deployment��������������������������������������������������������������������������������������������������������406

1. �Building the App���������������������������������������������������������������������������������������406

2. �Deploying to Netlify����������������������������������������������������������������������������������407

3. �Testing the Deployed App�������������������������������������������������������������������������408

Summary�����������������������������������������������������������������������������������������������������������408

�Index��������������������������������������������������������������������������������������������������411

Table of Contents



xix

About the Author
Nitesh Upadhyaya is a distinguished  

Solution Architect with over 15 years of 

experience in designing and delivering 

scalable, high-performance web applications 

and complex distributed architectures 

enhanced with AI. He holds a master’s 

degree in Computer Science from California 

State University, Long Beach, where he laid 

the foundation for his innovative work in 

technology.

Currently working at GlobalLogic, a Hitachi Group company, Nitesh 

drives enterprise solutions across diverse industries. He is a Senior 

Member of IEEE, an honor that recognizes his significant contributions to 

engineering and technology, and a Fellow of the Soft Computing Research 

Society, highlighting his leadership in computational research.

Nitesh’s achievements have been recognized globally, including being 

honored with the 40 Under Forty Award by Achievers World Magazine 

for his exceptional contributions to the tech industry. He is also a prolific 

writer and educator, having published influential research papers in 

esteemed conferences such as IEEE. Additionally, he is a technical content 

reviewer for leading publishers and frequently delivers guest lectures at 

universities and conferences, covering cutting-edge topics like artificial 

intelligence, machine learning, and generative AI.



xx

Driven by a deep passion for empowering developers and advancing 

technology, Nitesh is committed to simplifying complex concepts, 

fostering innovation, and mentoring the next generation of engineers. 

Through his expertise, mentorship, and contributions to the tech 

community, he has established himself as a trusted leader in software 

architecture and AI-driven solutions.

About the Author



xxi

About the Technical Reviewers
Naveen Shandilya serves as the Director 

of Engineering at GlobalLogic, a Hitachi 

Group company specializing in digital 

product engineering. A highly experienced IT 

professional, he brings extensive expertise in 

both technology and management. He holds a 

master’s degree in IT and a bachelor's degree 

in Computer Science. As a technical reviewer, 

he ensures precision, clarity, and consistency 

in complex concepts, enabling readers to grasp 

the subject with ease. Driven by a passion 

for knowledge sharing, Naveen is committed to upholding the highest 

standards in technical content. 

Pooja Padmani is a Senior Front-End 

Developer with expertise in web development, 

a strong background in computer science, and 

hands-on experience in the tech industry. With 

ten years of experience, she has contributed 

to a variety of projects across multiple 

domains, including healthcare, education, 

telecommunications, transportation, and 

logistics.



xxii

Passionate about coding, she specializes in optimizing front-end 

architecture, enhancing user engagement, and staying at the forefront of 

industry trends. She also enjoys reviewing technical literature to ensure 

clarity, accuracy, and practical value for fellow developers. Through 

thoughtful critique and feedback, she strives to support authors in 

delivering high-quality resources that empower the tech community.

About the Technical Reviewers



xxiii

Introduction

Welcome, and thank you for choosing this book as your guide to mastering 

React! Whether you are a beginner just starting your journey into front-

end development or an experienced developer looking to deepen your 

understanding of React, this book is designed to equip you with the skills 

and knowledge needed to create powerful, dynamic, and scalable web 

applications.

React has transformed the way developers build user interfaces, 

offering a robust, component-based approach that simplifies development 

and enhances performance. As one of the most popular JavaScript 

libraries, it is used by companies ranging from startups to industry giants. 

This book aims to bridge the gap between theory and practice, taking you 

from the foundational concepts of React to advanced topics, with practical, 

real-world applications along the way.

�Whom This Book Is For
This book is intended for developers at all skill levels:

•	 Beginners: You’ll learn the fundamentals of React, 

including components, state, props, and event 

handling, and progressively build your confidence 

through hands-on examples.

•	 Intermediate Developers: You’ll explore advanced 

topics like state management, hooks, performance 

optimization, and working with third-party libraries.



xxiv

•	 Experienced Developers: You’ll find in-depth 

discussions about best practices, architecture, and 

modern tools in the React ecosystem to enhance your 

existing knowledge.

�What This Book Covers
The structure of this book has been carefully planned to provide a step-by-

step learning experience:

•	 Chapter 1: Introduction to React sets the stage by 

exploring React’s history, its importance, and how it fits 

into the modern development ecosystem.

•	 Chapter 2: Setting Up Your Development 
Environment walks you through installing the 

necessary tools, such as Node.js, npm, and Vite, and 

setting up a project with best practices in mind.

•	 Chapter 3: Components, Props, and State dives into 

React’s core concepts, helping you understand how to 

create reusable, dynamic components.

•	 Chapter 4: JSX and Element Rendering explains the 

syntax of JSX and its role in rendering user interfaces.

•	 Chapter 5: Handling Events and Conditional 
Rendering focuses on interactivity, teaching you 

how to handle user actions and conditionally display 

elements.

•	 As the book progresses, you’ll delve into topics like 

state management with Redux, React Router for 

navigation, back-end integration, and deployment 

using platforms like Netlify or Vercel.

Introduction



xxv

In the final chapters, we bring everything together by building a  

real-world retail store application, demonstrating how to use the 

concepts covered in the book to create a complete, functional project.  

This app includes features like product listings, a shopping cart, and 

Stripe-based payment integration.

�What You’ll Gain
By the end of this book, you’ll have

	 1.	 A deep understanding of React’s core principles and 

how to use them effectively

	 2.	 The ability to design, build, and deploy scalable web 

applications

	 3.	 Practical experience through hands-on coding 

exercises and a full-scale project

	 4.	 Insights into best practices, common pitfalls, and how to  

stay up to date in the ever-evolving React ecosystem

�A Final Note
Writing this book has been a labor of love, combining years of practical 

experience and insights gained from working with React in real-world 

projects. My hope is that this book will empower you to build amazing 

applications, inspire you to tackle challenging problems, and instill 

confidence in your abilities as a developer.

Whether you are reading this book to solve a specific problem or to 

expand your horizons, I encourage you to experiment, ask questions, and, 

most importantly, have fun along the way. Let’s dive into React and explore 

the endless possibilities it offers!

Introduction



1© Nitesh Upadhyaya 2025 
N. Upadhyaya, Advanced Front-End Development,  
https://doi.org/10.1007/979-8-8688-1318-4_1

CHAPTER 1

Introduction to React
Congratulations on beginning your journey with React! In this book, we’re 

going to explore everything you need to know to build modern, scalable 

web applications using React, one of the most popular libraries for front- 

end development.

In this chapter, we’ll lay the foundation by exploring

•	 What React is and why it stands out

•	 A brief history of React and how it evolved into the 

powerful tool we use today

•	 Why developers love React and how it can transform 

your projects

By the end of this chapter, you’ll understand why React has become 

a favorite among developers and be ready to start building your first 

components.

�What Is React?
React is a JavaScript library for building user interfaces, originally 

developed by Facebook in 2013. It’s designed to handle only the view 

layer, the part of your application that users see and interact with. Unlike 

frameworks like Angular that attempt to handle everything, React focuses 

solely on the UI, making it flexible and easy to integrate with other libraries 

or frameworks for functionality beyond the view.

https://doi.org/10.1007/979-8-8688-1318-4_1#DOI


2

At its core, React provides a powerful, efficient way to build 

components that represent specific parts of your user interface. With 

React, you can create isolated, reusable components, each managing 

its own logic and UI, and combine them to form complex, interactive 

applications. Let’s break it down!

	 1.	 Library, Not a Framework: React doesn’t dictate 

how you build your app. Instead, it provides the 

building blocks (like components) that you can 

assemble in any way you like.

	 2.	 Component Based: Everything in React revolves 

around components. Think of components like 

LEGO blocks—you can use them individually or 

combine them to create complex interfaces.

React simplifies UI development in several ways. It allows you to write 

declarative code, where you define what your app should do, and React 

takes care of the how. Its Virtual DOM ensures blazing-fast updates, even 

for large applications, making it highly efficient. Moreover, getting started 

with React is simple—you only need basic knowledge of HTML, CSS, and 

JavaScript, making it accessible to beginners.

Note  React is a library, not a full framework. This gives you 
flexibility to pick and choose other libraries or tools based on your 
project’s needs.

Chapter 1  Introduction to React



3

�A Brief History of React
React’s journey began at Facebook,1 where it was created to address issues 

the company faced in managing complex UIs. Developers at Facebook 

struggled to maintain fast, efficient applications while keeping code 

readable and reusable. React solved these problems with its component- 
based architecture and Virtual DOM, which we’ll dive into shortly.

Since its open source release in 2013, React has undergone significant 

evolution. In 2015, React 0.14 introduced stateless functional components, 

simplifying component creation. Then, in 2016, React 15 improved 

rendering performance and stability. But the most transformative update 

came in 2019 with the introduction of React Hooks—a feature that allows 

you to manage state and lifecycle events in functional components. Today, 

React is maintained by Meta (formerly Facebook) and has a massive 

community of contributors and a rich ecosystem of tools and libraries.

�Why Use React?
So, what makes React so popular, and why should you consider it for your 

project? Here are some compelling reasons.

�Component-Based Architecture
React’s component-based architecture allows you to build your application 

in small, reusable chunks called components. Each component can 

manage its own state, handle events, and update independently, which 

makes it easy to build and maintain complex UIs. Think of components 

1 React was originally developed at Facebook by Jordan Walke in 2011 and open- 
sourced in 2013. It was initially used for Facebook’s newsfeed feature and later 
adopted across the platform.

Chapter 1  Introduction to React



4

like building blocks: you can use a single component for a button, a form, 

or even an entire page layout. This modularity encourages reusability and 

keeps your code organized. Let’s break it down!

	 1.	 Encapsulate UI and Logic: Each component is 

responsible for its own behavior and appearance, 

making it easier to understand and debug.

	 2.	 Promote Reusability: Once a component is 

created, you can reuse it in multiple places without 

rewriting code.

	 3.	 Support Modularity: By breaking down your UI into 

smaller pieces, you create a more organized and 

maintainable codebase.

React offers two primary types of components: functional 
components and class components. Functional components are the 

simplest type, defined as JavaScript functions, and are the most used 

today. On the other hand, class components are older and include lifecycle 

methods and state management but are gradually being replaced by 

functional components with hooks due to their simplicity and efficiency.

Imagine you’re designing a house: each room (e.g., bedroom, kitchen, 

living room) is a component and has its own properties, like dimensions 

and purpose, and is self-contained. Moreover, you can reuse similar 

designs (e.g., multiple bedrooms) across different houses. Similarly, in a 

React app, a button component can be reused on multiple pages, a navbar 

component can provide consistent navigation across the entire app, and a 

form component can handle user input wherever needed.

Here’s a simple example of how you can create and reuse a Button 

component in React. Listing 1-1 illustrates the implementation of a 

reusable Button component, and Listing 1-2 shows how this component is 

used within the App component as the entry point of the application.

Chapter 1  Introduction to React



5

Listing 1-1.  Button Component

// Button.js
import React from 'react';

const Button = ({ label, onClick }) => {
  return <button onClick={onClick}>{label}</button>;
}

export default Button;

Listing 1-2.  App Component

// App.js
import React from 'react';
import Button from './Button';

const App = () => {
  const handleAddToCart = () => alert('Added to cart!');
  �const handleCheckout = () => alert('Proceeding to 
checkout!');

  return (
    <div>
      <Button label="Add to Cart" onClick={handleAddToCart} />
      <Button label="Checkout" onClick={handleCheckout} />
    </div>
  );
}

export default App;

In this example, the Button component is a reusable UI element. Its 

behavior can be customized by passing props such as label for the button 

text and onClick for the action to be triggered when the button is clicked. 

Chapter 1  Introduction to React



6

The App component demonstrates how this reusable Button component 

can handle multiple functionalities, such as adding an item to the cart or 

proceeding to checkout, using separate event handlers.

�Benefits of Component-Based Architecture
The component-based architecture offers several benefits. First, it 

promotes reusability, allowing you to write components once and use 

them throughout your application or even in other projects. For example, 

a UserProfile component can display user information on a dashboard, 

settings page, or profile page. Second, it ensures a clear separation of 
concerns, where each component manages its own responsibilities, 

making it easier to isolate and fix bugs. For instance, if the cart button isn’t 

working, you only need to debug the Button component. Third, the self- 

contained nature of components simplifies testing, as you can test them 

individually without worrying about the rest of the application. Finally, 

this approach accelerates development since teams can work on different 

components simultaneously, speeding up the overall process.

�Complex Applications Made Simple
Let’s extend the idea of components to a more complex application, 

such as a shopping cart. In this example, a Header component displays 

the logo and navigation links, while a Product List component shows 

a grid of products with images, names, and prices. A Cart component 

handles the items in the user’s cart, and a Checkout component manages 

the final steps of the purchase process. Each of these components can be 

independently developed and tested before being combined to create the 

final application. Figure 1-1 illustrates the UI structure of an ecommerce 

application.

Chapter 1  Introduction to React



7

Figure 1-1.  UI structure of an ecommerce application

React’s component-based architecture is one of its greatest strengths, 

allowing developers to create modular, reusable, and scalable UIs. 

Whether you’re building a single button or a multipage application, 

components provide the foundation for a maintainable and efficient 

codebase. By mastering components, you’ll unlock the true potential 

of React and pave the way for building dynamic and interactive web 

applications.

�Virtual DOM for Performance
One of React’s core innovations is the Virtual DOM.2 To understand 

its significance, let’s first explore the challenges of working with the 

traditional DOM.

2 The Virtual DOM in React enables efficient updates by comparing the virtual 
DOM with the actual DOM and updating only the necessary elements. More 
information can be found at React’s Official Documentation.

Chapter 1  Introduction to React



8

�What Is the DOM?
The Document Object Model (DOM) represents your application’s user 

interface (UI) as a tree structure, where each element (e.g., div, button, 

input) is a node in the tree. Web browsers use the DOM to render your 

application’s content. However, directly updating the DOM can be slow 

and resource-intensive, especially in modern web applications with 

interactive and complex UIs. Each update triggers a series of processes, 

including recalculation of styles, where the browser recalculates CSS for 

affected elements; repainting, where visible elements are redrawn; and 

reflow, where the browser recalculates the layout for affected parts of the 

page. While these updates may not be noticeable in small applications, 

they can lead to performance bottlenecks in larger, more dynamic 

applications.

�What Is Virtual DOM?
React introduces the Virtual DOM, a lightweight in-memory 

representation of the real DOM, to address performance challenges. 

Instead of interacting with the real DOM directly, React first updates the 

Virtual DOM. It then compares the updated Virtual DOM with its previous 

version through a process called “diffing.” Based on this comparison, 

React calculates the minimal set of changes needed to update the real 

DOM, a process known as “reconciliation.” Finally, only the affected parts 

of the real DOM are updated, ensuring faster and more efficient rendering.

Think of the Virtual DOM as a “middle manager” between your app’s 

UI and the real DOM:

	 1.	 Instead of constantly disrupting the real DOM, React 

sends a clear, optimized “to-do list” of changes.

	 2.	 This reduces unnecessary work and ensures your 

app remains fast and responsive.

Chapter 1  Introduction to React



9

Imagine you’re editing a large document. Without the Virtual DOM, 

you make changes directly on the printed document. Each edit requires 

reprinting the entire document, wasting time and paper. With the Virtual 

DOM, you make edits on a draft copy (Virtual DOM) and only reprint the 

sections of the document that have changed.

�Benefits of the Virtual DOM
The Virtual DOM offers several key benefits. First, it significantly improves 

performance by optimizing updates, ensuring that the UI remains smooth 

even during frequent changes. This makes it particularly efficient for 

complex applications handling real-time data. Second, it simplifies 

updates with its declarative approach—you specify what you want to 

update, and React determines the most efficient way to achieve it. Finally, 

the Virtual DOM ensures cross-browser compatibility by abstracting away 

browser-specific quirks, providing consistent behavior across different 

browsers.

Let’s consider an ecommerce site where the price of a product updates 

dynamically based on user interactions. Listing 1-3 demonstrates how 

React’s Virtual DOM efficiently handles updates by focusing only on the 

elements that have changed, and Listing 1-4 shows how this component is 

used within the App component as the entry point of the application.

Listing 1-3.  Product Component

// Product.js
import React from 'react';

const Product = ({ price }) => {
  return <h1>Price: ${price}</h1>;
}

export default Product;

Chapter 1  Introduction to React



10

Listing 1-4.  App Component

// App.js
import React from 'react';
import Product from './Product;

const App = () => {
  const [price, setPrice] = React.useState(100);
  const increasePrice = () => setPrice(price + 10);

  return (
    <div>
      <Product price={price} />
      <button onClick={increasePrice}>Increase Price</button>
    </div>
  );
}

When the button is clicked, the price value updates in the Virtual 

DOM. React then compares the updated Virtual DOM with its previous 

version and identifies that only the <h1> element displaying the price has 

changed. As a result, React updates the real DOM exclusively for the <h1> 

element, leaving the rest of the page untouched.

�Visualizing the Process
React’s use of the Virtual DOM to optimize updates can be visualized as a 

step-by-step process. Initially, the Virtual DOM and the real DOM are in 

sync. When a change is detected, such as a state update, it triggers changes 

in the Virtual DOM. React then performs a process called “diffing,” where 

it compares the new Virtual DOM with its previous version to identify 

differences. Based on these differences, React calculates the smallest 

Chapter 1  Introduction to React



11

number of changes required in a process known as “reconciliation.” 

Finally, only the affected parts of the real DOM are updated, ensuring 

efficient and smooth updates.

Note  The Virtual DOM is one of React’s most powerful features for 
optimizing performance. By minimizing direct interaction with the 
real DOM, React reduces the time it takes to render updates, making 
applications feel more responsive.

�Declarative Syntax
React’s declarative syntax allows you to focus on describing what the UI 

should look like at any given state, while React takes care of the details on 

how to achieve it. This approach simplifies your code by eliminating the 

need for complex, step-by-step DOM manipulation.

�Declarative vs. Imperative

•	 Declarative Approach (React): You specify the desired 

outcome, and React determines how to update the UI.

•	 Imperative Approach (Traditional JavaScript): You 

provide detailed instructions to update the DOM, such 

as finding an element and manually modifying it.

Think of declarative syntax as placing an order at a restaurant: You tell 

the server what you want (e.g., “a cheeseburger”). The server handles how 

it gets prepared and served. In contrast, the imperative approach would 

require you to specify each step (e.g., “grill the patty, add cheese, toast the 

bun”)—time-consuming and prone to errors.

Chapter 1  Introduction to React



12

�Why Declarative Syntax Is Important
Declarative syntax is important for several reasons. First, it simplifies code 

by reducing complexity and improving readability. By allowing React to 

handle the “how,” there’s less room for errors, which leads to fewer bugs 

caused by manual DOM manipulation. Additionally, declarative code 

enhances maintainability, making it easier to understand and manage, 

especially in large applications. Here’s a simple example of how React’s 

declarative syntax simplifies updating the UI as illustrated in Listing 1-5.

Listing 1-5.  Conditional Rendering

// App.js
const App = () => {
  const [submitted, setSubmitted] = React.useState(false);

  const handleSubmit = () => {
    setSubmitted(true);
  };

  return (
    <div>
      {!submitted ? (
        <button onClick={handleSubmit}>Submit</button>
      ) : (
        <p>Thank you for submitting!</p>
      )}
    </div>
  );
}

The explanation is straightforward: React uses declarative updates, 

meaning the submitted state determines whether the button or the “Thank 

You” message is displayed. React automatically updates the DOM based 

on the state, eliminating the need to manually add or remove elements.

Chapter 1  Introduction to React



13

�React Hooks
Introduced in React 16.8, Hooks have revolutionized the way developers 

write React components. They allow you to manage state and handle 

side effects directly in functional components, eliminating the need for 

class components in many scenarios. Before Hooks, managing state and 

lifecycle methods required using class components, which often led to 

complex, hard-to-read code. With Hooks, functional components became 

just as powerful while remaining simpler and more reusable.

�Why Are Hooks Important?

	 1.	 Simplified Code: Hooks reduce boilerplate code, 

making your components easier to read and 

maintain.

	 2.	 Logic Reusability: With custom hooks, you can 

extract and reuse logic across multiple components.

	 3.	 Functional over Class: By enabling state and 

lifecycle management in functional components, 

Hooks have largely replaced the need for class 

components.

�Core Concepts of React Hooks
React provides several built-in Hooks, each designed for specific purposes. 

The useState Hook enables you to add and manage state in functional 

components, while the useEffect Hook handles side effects such as data 

fetching, subscriptions, or logging. The useContext Hook offers a way to 

share data across the component tree without the need for prop drilling. 

Additionally, you can create custom Hooks to encapsulate reusable logic, 

making your code more modular and maintainable.

Chapter 1  Introduction to React



14

Imagine your React app as a house: the state represents the current 

conditions in the house, such as whether the lights are on or off. Side 

effects, on the other hand, are the actions triggered by state changes, like 

turning on the lights notifying the electric meter to start recording energy 

usage. Hooks, such as useState and useEffect, function as the switches 

and mechanisms that manage these interactions seamlessly.

Here’s a simple example as shown in Listing 1-6 that demonstrates 

how Hooks make managing state and side effects easy.

Listing 1-6.  Counter Example with Hooks

// App.js
import React, { useState, useEffect } from 'react';

const App = () => {
  const [count, setCount] = useState(0); // Initializing state

  // Logging the count whenever it changes
  useEffect(() => {
    console.log(`Count updated: ${count}`);
  }, [count]); �// Dependency array ensures this runs only when 

'count' changes

  return (
    <div>
      <p>Count: {count}</p>
      �<button onClick={() => setCount(count + 

1)}>Increment</button>
    </div>
  );
}

export default App;

Chapter 1  Introduction to React



15

The example demonstrates the usage of useState and useEffect. 

The useState Hook initializes the count variable with a value of 0 and 

provides the setCount function to update the state. Every time setCount 

is called, react re-renders the component with the updated state. 

Meanwhile, the useEffect Hook runs after the component renders. In 

this example, it logs the updated count value to the console whenever the 

count changes, showcasing how side effects can be managed effectively. 

Table 1-1 provides a comprehensive list of all React Hooks along with their 

respective purposes.

Table 1-1.  Commonly Used Hooks in React

Hook Purpose

useState Manages local state in a component

useEffect Handles side effects like API calls, subscriptions, or DOM updates

useContext Shares global state across components without passing props 

manually

useReducer An alternative to useState for managing more complex state logic

useRef Accesses DOM elements or stores mutable variables without causing 

re-renders

useMemo Optimizes performance by memoizing expensive computations

�Custom Hooks
One of the most powerful aspects of Hooks is the ability to create custom 
Hooks. A custom Hook is simply a JavaScript function that uses built-in 

Hooks to encapsulate reusable logic. For example, let’s create a custom 

Hook to track window width as shown in Listing 1-7.

Chapter 1  Introduction to React



16

Listing 1-7.  Building Simple Custom Hook

// CustomHook.js
import { useState, useEffect } from 'react';

const useWindowWidth = () => {
  const [width, setWidth] = useState(window.innerWidth);

  useEffect(() => {
    const handleResize = () => setWidth(window.innerWidth);
    window.addEventListener('resize', handleResize);

    �return () => window.removeEventListener('resize', 
handleResize); // Cleanup

  }, []);

  return width;
}

// Using the custom Hook in App.js component
const App = () => {
  const width = useWindowWidth();

  return <p>Current window width: {width}px</p>;
}

Hooks are a game changer in React development. Before their 

introduction, managing state and lifecycle events required more 

verbose and error-prone class components. Developers needed to 

understand and implement lifecycle methods like componentDidMount 

and componentDidUpdate, and reusing logic across components was 

challenging without patterns like higher-order components (HOCs) or 

render props. Hooks simplify this process by colocating state and effects 

within functional components, keeping related logic together. Additionally, 

complex patterns like HOCs are often unnecessary, as custom Hooks make 

logic reuse more straightforward and maintainable.

Chapter 1  Introduction to React



17

�React vs. Other Frameworks
React is not the only framework in the JavaScript ecosystem. Let’s take 

a quick look at how it compares to other popular frameworks. Table 1-2 

highlights the comparison between React and other frameworks.

•	 Angular: Angular is a complete framework, providing 

everything from data binding to routing and services. 

It’s powerful but often comes with a steeper learning 

curve and a larger bundle size due to its comprehensive 

features.

•	 Vue.js: Vue offers a similar component-based 

architecture and is also popular for its simplicity 

and ease of use. Vue’s syntax is often seen as more 

approachable, but React’s ecosystem and community 

support are generally larger.

Table 1-2.  React Comparison with Other Frameworks

Features React Angular Vue

Learning Curve Moderate Steep Easy

Component Architecture Yes Yes Yes

State Management Redux Built-in Vuex

Ecosystem Support Large Large Growing

Flexibility High Moderate High

React’s flexibility, performance, and ecosystem make it an ideal 

choice for many projects, especially those that require scalability and a 

modular approach.

Chapter 1  Introduction to React



18

�The Structure of a React Application
Now that you know what makes React unique, let’s look at the basic 

structure of a React application:

	 1.	 Components: The core building blocks of a 

React app. Each component represents a part of 

the UI and can range from a single button to an 

entire layout.

	 2.	 State and Props: Components manage their own 

state, holding data they need to render. Props allow 

components to share data with each other, creating 

connections between components.

	 3.	 JSX Syntax: React uses JSX (JavaScript XML), which 

looks like HTML but lets you write JavaScript within 

your UI. JSX makes React code easy to read and 

visually connects JavaScript with the HTML-like 

elements it creates.

	 4.	 Event Handling: React allows you to handle user 

interactions like clicks and form submissions easily, 

making applications interactive and responsive.

Tip  If you’re new to JSX, think of it as HTML with JavaScript 
embedded in it. JSX allows you to combine logic and UI in a way that 
is more readable and easier to maintain.

Chapter 1  Introduction to React



19

�What You’ll Learn in This Book
This book is designed to take you from a complete beginner in React to 

building advanced, production-ready applications. It’s structured to guide 

you step by step, gradually introducing concepts with practical examples. 

Here’s a quick preview of what’s in store:

Early Chapters

•	 You’ll start with the fundamentals of React, learning 

how to create and render components, use JSX syntax, 

and manage data using state and props. These chapters 

will also introduce you to core concepts like event 

handling and conditional rendering, giving you the 

building blocks for interactive UIs.

Middle Chapters

•	 Once you’re comfortable with the basics, we’ll dive 

into advanced concepts like managing state effectively 

with React Hooks, Context API, and Redux. You’ll learn 

how to handle forms, manage user input, and build 

dynamic, multipage applications using React Router. 

These chapters will include hands-on projects to 

solidify your understanding.

Final Chapters

•	 The final chapters focus on real-world challenges: 

performance optimization, security best practices, and 

ensuring accessibility in your applications. You’ll apply 

everything you’ve learned to build a complete retail 
store application, integrating features like product 

listings, shopping carts, and checkout functionality. 

This project will give you the confidence to build your 

own scalable React applications.

Chapter 1  Introduction to React



20

�Summary
React is a powerful and flexible JavaScript library that has redefined 

how developers build modern user interfaces. Its component-based 

architecture promotes modularity and reusability, making it easier to 

manage even the most complex applications. By leveraging the Virtual 

DOM, React delivers exceptional performance, ensuring smooth and 

responsive user experiences.

The declarative nature of React simplifies development by focusing on 

what the UI should look like, leaving the how to React. This approach not 

only makes code more predictable but also significantly reduces bugs.

In this chapter, you’ve gained a foundational understanding of React’s 

key features and its place in modern web development. As you move to 

the next chapter, you’ll set up your development environment and start 

building your first React components.

Get ready to turn concepts into code—let’s dive in!

Chapter 1  Introduction to React



21© Nitesh Upadhyaya 2025 
N. Upadhyaya, Advanced Front-End Development,  
https://doi.org/10.1007/979-8-8688-1318-4_2

CHAPTER 2

Setting Up Your 
Development 
Environment
In this chapter, we’ll set up everything you need to start building 

applications with React. Setting up a well-configured development 

environment is essential to ensure a smooth workflow and optimize 

productivity. We’ll cover the installation of Node.js and npm, creating your 

first React app using both create-react-app and Vite, and some essential 

tools that will help streamline your development process, including VS 
Code, extensions, and Git for version control.

By the end of this chapter, you’ll have a complete React setup ready to 

go, so you can jump straight into building your applications.

https://doi.org/10.1007/979-8-8688-1318-4_2#DOI


22

�Installing Node.js and npm
Node.js1 is a JavaScript runtime that allows you to run JavaScript on 

your local machine, outside of a browser. npm (Node Package Manager) 

comes bundled with Node.js and is used to install libraries and packages, 

including React. Here’s how to set it up.

�Download and Install Node.js
Visit the Node.js official website and download the installer for your 

operating system. There are usually two versions available: LTS (Long- 
Term Support) and Current. For stability, it’s generally recommended 

to download the LTS version. After downloading the installer, run it and 

follow the installation prompts. The installer will also set up npm for you. 

Figure 2-1 illustrates the Node.js website's download section, highlighting 

the LTS version.

Figure 2-1.  Node.js website showing the LTS version 
download option

1 Node.js was created by Ryan Dahl in 2009. It allows JavaScript to run outside the 
browser, making it possible to build server-side applications with JavaScript. For 
more information, visit the Node.js documentation.

Chapter 2  Setting Up Your Development Environment



23

�Verify Installation
Once installed, you can verify that Node.js and npm are properly 

installed by opening your terminal (or Command Prompt on Windows) 

and running the commands. Listing 2-1 demonstrates how to check the 

installed versions of Node.js and npm. Figure 2-2 provides an example 

output for these commands.

Listing 2-1.  Verify Version for Node and npm

node -v
npm -v

Figure 2-2.  Output of Node.js and npm version verification in the 
terminal

You should see the version numbers for both Node.js and npm. If you 

don’t see these, it might mean there was an issue with the installation, and 

you may need to try reinstalling or consult the Node.js documentation for 

troubleshooting tips.

Tip I f you’re new to the command line, start by practicing simple 
commands like cd to change directories or ls (or dir on Windows) to 
list files. Basic command-line skills will make you more efficient as a 
developer.

Chapter 2  Setting Up Your Development Environment



24

�Updating Node.js and npm
If you already have Node.js installed, you may want to update to the latest 

version to ensure compatibility with the latest packages and features. To 

update npm, you can run the command shown in Listing 2-2. Figure 2-3 

displays the output of updating npm using the terminal.

Listing 2-2.  Updating npm

npm install -g npm

Figure 2-3.  Terminal output for updating npm to the latest version

To update Node.js, visit the Node.js website and download the latest 

installer, or use a tool like nvm (Node Version Manager), which allows 

you to switch between multiple Node.js versions.

Chapter 2  Setting Up Your Development Environment



25

�Creating a React App with create-react-app
The create-react-app2 tool is a popular, beginner-friendly way to set up a 

React project. It handles the initial configuration and setup for you, so you 

can focus on building features right away. Let’s walk through creating a 

React app using create-react-app.

�Create Your First React App
In your terminal, navigate to the folder where you want to create your 

project. For example, if you want to create it in your “Projects” folder, you 

can use the command shown in Listing 2-3.

Listing 2-3.  Navigate to Projects Folder

cd ~/Projects

Next, run the command in Listing 2-4 to create a new React app.

Listing 2-4.  Create my-first-app

npx create-react-app my-first-app

Replace my-first-app with your desired project name. The npx 

command is a package runner tool that comes with npm and allows you 

to execute packages without installing them globally. Figure 2-4 shows 

the terminal output of running the npx create-react-app command and 

prompting the user to proceed.

2 create-react-app is maintained by the React team and provides a standardized 
project structure. You can explore the repository and more detailed configuration 
options on its GitHub page.

Chapter 2  Setting Up Your Development Environment



26

Figure 2-4.  Initial terminal output when running npx  
create-react-app, prompting for user confirmation

Enter y to proceed. Once the execution is complete, a success message 

will appear, providing details about the available commands you can use. 

Figure 2-5 shows an example of this success message.

Figure 2-5.  Success message after initializing a new React app, listing 
available commands

Chapter 2  Setting Up Your Development Environment



27

�What create-react-app Does
This command creates a project folder (my-first-app), installs all necessary 

dependencies, and configures the initial file structure. Inside the project 

folder, you’ll see folders like src (where your source code goes) and public 

(which contains static files like index.html). Figure 2-6 displays the structure 

of the project folder after running the create-react-app command.

Figure 2-6.  File structure of a newly created React app project folder, 
including src and public directories

Note  create-react-app is optimized for simplicity and ease of use, 
making it a great choice for new projects or if you’re just starting out 
with React.

�Understanding the Project Structure
After creating the app, navigate into the project folder and list the files.  

The project includes files like

•	 src/index.js: The entry point for your React 

application

•	 src/App.js: The main app component, a good place to 

start editing

•	 public/index.html: The HTML template for your application

Chapter 2  Setting Up Your Development Environment



28

These files and folders are set up for you, allowing you to focus on 

coding instead of configuration. Figure 2-7 highlights the contents of the 

src folder, while Figure 2-8 showcases the public folder structure.

Figure 2-7.  File structure of the src folder in a newly created 
React app

Figure 2-8.  File structure of the public folder in a newly created 
React app

�Run the Development Server
To start the development server, use the commands shown in Listing 2-5.

Listing 2-5.  Start the Server

cd my-first-app
npm start

Chapter 2  Setting Up Your Development Environment



29

Figure 2-9.  Terminal output after starting the React 
development server

This command starts a local development server and opens your 

app in the browser at http://localhost:3000. Any changes you make in 

your code will automatically reload in the browser, allowing you to see 

updates instantly. Figure 2-9 shows the terminal output when starting the 

development server, and Figure 2-10 displays the default React app in the 

browser.

Chapter 2  Setting Up Your Development Environment



30

Figure 2-10.  Default React app running in the browser at  
http://localhost:3000

�Stopping the Server
To stop the development server, go to the terminal where the server is 

running and press Ctrl+C (or Cmd+C on macOS). This will stop the server 

and free up the port for other uses.

Tip T he local development server with auto-reloading is a great 
way to see changes in real time. Remember to stop the server when 
you’re done working for the day.

Chapter 2  Setting Up Your Development Environment



31

�Alternative Setup with Vite
Vite3 is a newer build tool that provides faster development and better 

optimization for modern JavaScript applications. While create-react-app 

is great for beginners, Vite is an alternative for developers seeking faster 

build times, especially for larger projects.

�Install Vite and Create a Project
To create a new React project using Vite, execute the commands as shown 

in Listing 2-6.

Listing 2-6.  Create New Project with Vite

npm create vite@latest my-vite-app -- --template react
cd my-vite-app
npm install

Figure 2-11.  Terminal output during the process of creating a new 
React project with Vite

3 Vite is a fast build tool created by Evan You, the creator of Vue.js. Vite offers faster 
builds and Hot Module Replacement (HMR), which improves the development 
experience. For more, see the Vite documentation.

Chapter 2  Setting Up Your Development Environment



32

During the process, you will be prompted to proceed by entering y. 

Once completed, the terminal will display a Done message along with 

details about available commands for your new project. Figure 2-11 shows 

the terminal output when running the Vite project creation command, and 

Figure 2-12 displays the successful completion message after installation.

Figure 2-12.  Completion message and available commands after 
setting up the Vite project

�Run the Vite Development Server
To start the Vite development server, use the command shown in 

Listing 2-7.

Listing 2-7.  Run Development Server

npm run dev

Chapter 2  Setting Up Your Development Environment



33

Figure 2-13.  Terminal output after starting the Vite 
development server

The terminal will output a local server URL, typically http://
localhost:5173/, where your application can be accessed. Like create- 

react-app, Vite supports hot reloading, enabling you to see code changes 

reflected in the browser instantly. Figure 2-13 displays the terminal output 

after starting the development server, and Figure 2-14 shows the default 

Vite + React app in the browser.

Chapter 2  Setting Up Your Development Environment



34

Figure 2-14.  Vite + React app displayed in the browser at  
http://localhost:5173

�Comparison Between Vite and create-react-app
Vite offers superior performance compared to create-react-app, as 

it utilizes ES Modules for bundling and Hot Module Replacement 

(HMR), which significantly optimizes development speed. In terms of 

configuration, Vite is more flexible, allowing for greater customization. 

However, this flexibility may require additional setup for advanced use 

cases compared to the more straightforward configuration of create- 

react-app.

Chapter 2  Setting Up Your Development Environment



35

Caution I f your project requires complex configuration or third-
party integrations, Vite may require additional setup compared to 
create-react-app. Consider your project’s needs before deciding 
which tool to use.

�Essential Tools for React Development
A well-rounded development environment includes tools that improve 

productivity and code quality. Let’s set up some essential tools to enhance 

your React workflow.

�Visual Studio Code (VS Code)
VS Code4 is a lightweight and powerful code editor developed by 

Microsoft. It’s highly customizable, with extensions available for virtually 

every programming language, including React.

•	 Download and Install VS Code

	 Visit Visual Studio Code and download the installer 

for your operating system. Follow the on-screen 

instructions to complete the installation.

•	 Basic Configuration

	 Open VS Code and adjust your settings, such as 

themes, font size, and default formatting options. These 

configurations will improve your workflow and comfort 

while coding.

4 Extensions can greatly enhance your coding experience. The Visual Studio 
Code marketplace offers thousands of extensions across various programming 
languages and tools.

Chapter 2  Setting Up Your Development Environment



36

Tip V S Code’s integrated terminal allows you to run terminal 
commands without leaving the editor, making it convenient to 
manage your development workflow.

�Recommended Extensions 
for React Development
To get the most out of VS Code, here are some recommended extensions:

•	 ESLint: Helps you maintain clean and consistent code 

by identifying syntax errors and enforcing coding 

standards

•	 Prettier: Automatically formats your code, ensuring 

consistency and readability

•	 ES7 React/Redux/GraphQL/React-Native Snippets: 

Adds helpful code snippets for React, making it faster to 

create components and import modules

•	 Bracket Pair Colorizer: Helps you match opening and 

closing brackets with color coding, useful for complex 

nested code

•	 GitLens: Adds Git superpowers to VS Code, making it 

easier to manage version control within the editor

Note E xtensions like ESLint and Prettier help enforce code 
standards, reducing bugs and ensuring a cleaner codebase.

Chapter 2  Setting Up Your Development Environment



37

�Setting Up Git for Version Control
Git5 is a version control system that lets you track changes in your code, 

collaborate with other developers, and revert to previous versions when 

necessary. If you’re working on personal projects, Git is invaluable for 

managing your code history, and if you’re collaborating, it’s essential for 

seamless teamwork.

�Download and Install Git
Visit the Git website to download and install Git for your operating 

system. Follow the installation instructions. Figure 2-15 displays the Git 

download page.

Figure 2-15.  Git website download page for selecting the 
appropriate version

5 Git was developed by Linus Torvalds in 2005 and is widely used for version 
control in software development. A helpful beginner’s guide can be found in the 
Git documentation.

Chapter 2  Setting Up Your Development Environment



38

�Initial Git Configuration
After installing, open your terminal and configure your name and email 

(these will be associated with your Git commits). Listing 2-8 shows how to 

configure Git with username and email address.

Listing 2-8.  Configure Git with Username and Email Address

git config --global user.name "Your Name"
git config --global user.email your.email@example.com

After completing the setup, you can run git config --global --list 

to verify whether the user credentials have been successfully configured as 

illustrated in Figure 2-16.

Figure 2-16.  Terminal output showing username and email 
configuration in Git

�Initialize a Git Repository
To initialize a Git repository, navigate to your project directory and run the 

command as shown in Listing 2-9.

Listing 2-9.  Initialize Git Repository

git init

This command initializes an empty Git repository in your project 

folder, setting up the necessary .git directory. Figure 2-17 displays 

the terminal output after running the git init command, which also 

provides guidance on setting the default branch name for your repository.

Chapter 2  Setting Up Your Development Environment



39

Figure 2-17.  Terminal output after initializing a Git repository in the 
project directory

�Basic Git Workflow
Stage Changes: Add your changes to the staging area as illustrated in 

Listing 2-10.

Listing 2-10.  Stage Modified Files

git add .

Commit Changes: Commit your changes with a message describing 

the update as illustrated in Listing 2-11. Figure 2-18 shows the terminal 

output after staging and committing changes.

Listing 2-11.  Commit Changes

git commit -m "Initial commit"

Chapter 2  Setting Up Your Development Environment



40

Figure 2-18.  Terminal output after staging changes and committing 
the initial commit

Push to Remote Repository (Optional): If you’re using a platform 

like GitHub, create a repository there and push your code as shown in 

Listing 2-12.

Listing 2-12.  Push to Repository

git remote add origin https://github.com/yourusername/ 
my-first-app.git
git push -u origin main

Tip  Use meaningful commit messages. A clear commit history 
makes it easier to track changes and understand project progress.

Chapter 2  Setting Up Your Development Environment



41

�Summary
By now, you should have everything you need to start building with 

React. We’ve covered the essential steps to set up your development 

environment, beginning with the installation of Node.js and npm, the 

foundational tools for React development. We then explored two popular 

ways to initialize a new React project: using create-react-app, the 

tried-and-true method offered by Facebook’s React team, and Vite, a 

modern, fast, and opinionated alternative that optimizes for a smoother 

development experience.

Additionally, we configured VS Code as your IDE, set up essential 

extensions to enhance productivity, and ensured Git was installed for 

version control, so you can track your changes and collaborate seamlessly. 

These tools and workflows are designed to empower you, allowing you to 

focus on building your application without worrying about setup hassles.

In the next chapter, we’ll dive into React’s core concepts: components, 

props, and state. These are the building blocks of any React application, 

enabling you to create dynamic, interactive interfaces. With your 

environment fully configured, you’re ready to start experimenting with 

React code. So, let’s take a deeper look into what makes React such a 

powerful library for front-end development!

Chapter 2  Setting Up Your Development Environment



43© Nitesh Upadhyaya 2025 
N. Upadhyaya, Advanced Front-End Development,  
https://doi.org/10.1007/979-8-8688-1318-4_3

CHAPTER 3

Components, Props, 
and State
In React, everything revolves around components, which form the building 

blocks of your application’s user interface. Components are reusable 

pieces of UI that can manage their own data and behavior through state 

and receive external data through props. In this chapter, we’ll dive into 

the core concepts of React components, explore the differences between 

functional and class components, and introduce props and state 

management.

By the end of this chapter, you’ll have a solid understanding of how to 

create and use components, manage their state, and pass data to them in a 

way that builds a dynamic and interactive user interface.

�Introduction to Components
A component in React is essentially a JavaScript function or class 

that returns a piece of UI. Components allow you to break down your 

application into smaller, self-contained units, making your code more 

organized and reusable. React components can be as simple as a button 

or as complex as an entire page layout. Figure 3-1 illustrates the folder 

structure for organizing React components within the src directory.

https://doi.org/10.1007/979-8-8688-1318-4_3#DOI


44

Before we dive into creating components, let’s organize our project:

	 1.	 Navigate to the src folder in your React project.

	 2.	 Create a folder named components to store all your 

components.

	 3.	 Inside components, create two subfolders:

•	 functionalComponents

•	 classComponents

Figure 3-1.  Folder structure showing the organization of functional 
and class components in a React project

�Types of Components in React
React supports two main types of components: functional components 

and class components.

�Functional Components
Functional components are JavaScript functions that return a React 

element. They’re the most common way to create components in modern 

React, especially since the introduction of Hooks. Functional components 

Chapter 3  Components, Props, and State



45

are simple and lightweight, making them ideal for components that 

don’t require advanced features like lifecycle methods. Inside the 

functionalComponents folder, create a file named Greeting.jsx and add 

the code shown in Listing 3-1.

Listing 3-1.  Greeting Functional Component

// Greeting.jsx
const Greeting = () => {
  return <h1>Functional Based Component!</h1>;
}
export default Greeting;

To render this component, open App.js in the src folder and import 

the Greeting component and use it as shown in Listing 3-2. Figure 3-2 

shows the rendered output of the Greeting functional component.

Listing 3-2.  Entry Point of Application—Functional Component

// App.jsx

import Greeting from './components/functionalComponents/
Greeting.jsx';
import './App.css'

const App = () => {
  return (
    <div>
      <Greeting />
    </div>
  );
}
export default App;

Chapter 3  Components, Props, and State



46

Figure 3-2.  Output of the Greeting functional component rendered 
in the browser

In this example, Greeting is a functional component that returns an h1 

element with the text “Functional Based Component!”. When you run the 

development server, this output will be displayed in the browser.

�Class Components
Before the introduction of Hooks, class components were the standard 

for creating more complex components. Class components are created 

using ES6 classes and provide additional features like lifecycle methods. 

Although functional components with Hooks have largely replaced class 

components, it’s still useful to understand them, as you may encounter 

class components in legacy codebases. Inside the classComponents folder, 

create a file named Greeting.jsx and add the code shown in Listing 3-3.

Listing 3-3.  Greeting Class Component

// Greeting.jsx
import React, { Component } from 'react';
class Greeting extends Component {
  render() {
    return <h1>Class Based Component!</h1>;
  }
}
export default Greeting;

Chapter 3  Components, Props, and State



47

To render this component, open App.js in the src folder and import 

the Greeting component and use it as shown in Listing 3-4. Figure 3-3 

shows the rendered output of the Greeting class component.

Listing 3-4.  Entry Point of Application—Class Component

// App.jsx
import Greeting from './components/class-components/
Greeting.jsx';

const App = () => {
  return (
    <div>
      <Greeting />
    </div>
  );
}

export default App;

Figure 3-3.  Output of the Greeting class component rendered in 
the browser

In this example, Greeting is a class component that extends React.

Component and has a render method that returns the h1 element with the 

text “Class Based Component!”. When you run the development server, this 

output will be displayed in the browser.

Chapter 3  Components, Props, and State



48

Note  While functional components are recommended for new 
development, understanding class components is beneficial for 
working with legacy React code.

�Props: Passing Data to Components
Props (short for “properties”) are a way of passing data from a parent 

component to a child component. Props are read-only and cannot be 

modified by the child component; they’re meant to provide information 

that a component needs to render properly.

When implementing a functional component, Props are 

passed as an argument to functional components and can be used 

within the component. Let’s update our Greeting.jsx file inside the 

functionalComponents folder to use props as shown in Listing 3-5.

Listing 3-5.  Greeting Functional Component—with Name Prop

// Greeting.jsx
const Greeting = ({ name }) => {
  return <h1>Hello, {name}!</h1>;
}
export default Greeting;

To render this component, open App.js in the src folder and import 

the Greeting component and use it as shown in Listing 3-6. Figure 3-4 

shows the rendered output.

Chapter 3  Components, Props, and State



49

Listing 3-6.  Entry Point of Application—Functional Component 

with Name Prop

import Greeting from './components/functionalComponents/
Greeting.jsx';
import './App.css'

const App = () => {
  return (
    <div>
      <Greeting name="John" />
    </div>
  );
}

export default App;

Figure 3-4.  Output of the Greeting functional component that 
receives a name prop rendered in the browser

In this example, name is a prop passed to the Greeting component, 

allowing it to display “Hello, John!” dynamically.

When implementing a class component, Props are accessed via 

the this.props object. Let’s update our Greeting.jsx file inside the 

classComponents folder to use props as shown in Listing 3-7.

Chapter 3  Components, Props, and State



50

Listing 3-7.  Greeting Class Component—Props Accessible via 

this.props

// Greeting.jsx
import React, { Component } from 'react';
class Greeting extends Component {
  render() {
    return <h1>Hello, {this.props.name}!</h1>;
  }
}

To render this component, open App.js in the src folder and import 

the Greeting component and use it as shown in Listing 3-8. Figure 3-5 

shows the rendered output.

Listing 3-8.  Entry Point of Application—Class Component Props 

Accessible via this.props

import Greeting from './components/classComponents/
Greeting.jsx';
import './App.css'

const App = () => {
return (
   <div>
     <Greeting name="Jane" />
   </div>
 );
}

export default App;

Chapter 3  Components, Props, and State



51

Figure 3-5.  Output of the Greeting class component that receives 
prop via this.props rendered in the browser

In this example, name is a prop passed to the Greeting component, 

allowing it to display “Hello, Jane!” dynamically.

React allows you to set default props for components to ensure they 

have default values if no prop is provided. Additionally, prop types can be 

used to enforce type-checking on props, helping to prevent bugs by ensuring 

components receive the correct types of data as shown in Listing 3-9.

Listing 3-9.  Using Default Props and Prop Types

import PropTypes from 'prop-types';
function Greeting({ name }) {
  return <h1>Hello, {name}!</h1>;
}

Greeting.defaultProps = {
  name: 'Guest'
};

Greeting.propTypes = {
  name: PropTypes.string
};

export default Greeting;

Chapter 3  Components, Props, and State



52

Tip  Using default props and prop types improves your code’s 
reliability and makes your components easier to understand and 
maintain.

�State: Managing Component Data
State is a way to manage data within a component that can change over 

time. Unlike props, which are passed from parent to child, state is internal 
to a component and can be updated by the component itself. When state 

changes, react automatically re-renders the component to reflect the 

new state.

�Using State in Functional Components
Functional components use the useState Hook to manage state. The 

useState Hook returns an array with two elements: the current state and 

a function to update it as shown in Listing 3-10. Moreover, Figure 3-6 

displays the rendered output of the Counter component, where the count 

starts at zero and increments each time the button is clicked.

Listing 3-10.  Simple Counter Component Using useState

import React, { useState } from 'react';
import './Counter.css';

function Counter() {
  const [count, setCount] = useState(0);

  return (
    <div className="counter-container">
      <p className="counter-text">Count: {count}</p>

Chapter 3  Components, Props, and State



53

      �<button className="counter-button" onClick={() => 
setCount(count + 1)}>

        Increment
      </button>
    </div>
  );
}

export default Counter;

Figure 3-6.  Output of the Counter component using the 
useState Hook

In this example, count is the state variable, and setCount is the 

function to update count. Each time the button is clicked, setCount 

updates the count, causing the component to re-render.

�Using State in Class Components
In class components, state is managed using the this.state object and 

updated using this.setState. Here is an example of a simple counter 

component implemented as a class component in Listing 3-11.

Chapter 3  Components, Props, and State



54

Listing 3-11.  Simple Counter Component in Class Components

import React, { Component } from 'react';
import './Counter.css'; // Import the CSS file

class Counter extends Component {
  constructor(props) {
    super(props);
    this.state = { count: 0 };
  }

  increment = () => {
    �this.setState((prevState) => ({ count: prevState.count 

+ 1 }));
  };

  render() {
    return (
      <div className="counter-container">
        �<p className="counter-text">Count: {this.state.

count}</p>
        �<button className="counter-button" onClick={this.

increment}>
          Increment
        </button>
      </div>
    );
  }
}

export default Counter;

Chapter 3  Components, Props, and State



55

In this example, this.state.count holds the current state, and this.
setState updates the count, causing the component to re-render with the 

updated value. Each time the “Increment” button is clicked, the increment 

method updates the state by incrementing the count value. Figure 3-7 

shows the rendered output of the Counter class component, displaying the 

count and the increment button.

Figure 3-7.  Output of the Counter class component using this.
state and this.setState

Caution  In class components, avoid directly modifying this.state; 
always use this.setState to update state.

�Differences Between Props and State
In React, both props and state play essential roles in managing data, but 

they serve different purposes and are handled differently. Understanding 

the distinction between them is critical for building effective and 

maintainable components. Refer to Table 3-1 for a comparison between 

props and state.

Chapter 3  Components, Props, and State



56

	 1.	 Props: These are short for “properties” and are 

used to pass data from a parent component to a 

child component. Props are read-only, meaning the 

receiving component cannot modify them directly. 

Props make components more reusable and 

customizable since you can pass different values for 

each instance.

	 2.	 State: Unlike props, which are passed down from 

the parent, state is managed within the component 

itself. It represents data that can change over time. 

Components can modify their own state, and when 

the state updates, React re-renders the component 

to reflect the new data. State is typically used for 

data that changes dynamically, like form inputs or 

toggle switches.

Table 3-1.  Comparison Between Props and State

Feature Props State

Definition Data passed from parent 

to child

Data managed within the 

component

Mutability Read-only Can be modified

Purpose Pass information Store dynamic data

Access in Functional 

Components

Direct (as function 

arguments)

useState Hook

Access in Class 

Components

this.props this.state

Chapter 3  Components, Props, and State



57

�Best Practices for Using Props and State
When working with props and state in React, following best practices can 

help you build clean, maintainable, and efficient components. One of the 

key principles is to keep state local to the component whenever possible. 

State should only be used for data that changes over time and is specific to 

the component. For shared or static data, consider using props or context 

instead. Overusing state can unnecessarily complicate components and 

make them harder to maintain, so it’s important to use props and context 

wherever appropriate. For example, if managing multiple pieces of related 

state, it’s often better to group them into a single object for easier handling 

and fewer bugs.

When passing data through props, it’s a good idea to destructure 
props directly in the component function. This simplifies your code 

by removing repetitive references to the props object, making it more 

readable and concise. Another essential best practice is to use PropTypes 

to validate the data type of props. This ensures that the correct type of 

data is passed to your components, helping you catch potential bugs 

early during development. Additionally, setting default props provides 

fallback values for props that aren’t explicitly passed, which can prevent 

unexpected behaviors in your application.

To further maintain a clean codebase, avoid mutating state directly. 

Always use the appropriate updater functions, such as setState in class 

components or the useState updater in functional components, to 

ensure React can properly track and re-render updates. Similarly, try not 

to pass excessive props to child components; only pass what is necessary 

to keep the code simple and easier to understand. For cases where child 

components need to communicate back to parent components, it’s a 

good idea to use callback functions passed as props. This allows child 

components to trigger specific actions in their parents, ensuring a clear 

flow of data and events.

Chapter 3  Components, Props, and State



58

By adhering to these best practices, you can make your React 

components more predictable, reusable, and easier to debug. Whether 

managing state locally, passing data through props, or leveraging 

validation with PropTypes, these principles will help you create scalable 

and robust applications.

Note  Following best practices for props and state can make your 
code more predictable and easier to debug.

�Example: Building a Simple User 
List Application
In this section, we’ll build a User List Application that demonstrates 

everything we’ve discussed so far—props, state, default props, 

destructuring, and React best practices. This application will display a list 

of users with their name, email, and activity status. Users can toggle their 

activity status dynamically using a button. This example ties together all 

the concepts to create a simple yet practical React application.

We begin with the App component, which serves as the main entry 

point of the application as shown in Listing 3-12. Inside this component, 

we initialize the state with a list of users, each represented as an object 

containing id, name, email, and isActive properties. To handle changes in 

user activity, we define a toggleUserActivity function that takes a user’s 

ID as an argument. This function maps through the user list, toggling the 

isActive property for the user with the given ID while keeping the rest of 

the state intact. This approach ensures the state is updated immutably, 

following React’s best practices. The App component then passes the 

user data and the toggle function to the UserList component via props, 

enabling child components to access and interact with the data. Here’s 

how the App component is implemented.

Chapter 3  Components, Props, and State



59

Listing 3-12.  App.jsx—Entry Point of Application

// App.jsx
import React, { useState } from 'react';
import UserList from './components/UserList';

const App = () => {
  const [users, setUsers] = useState([
    �{ id: 1, name: 'John Doe', email: 'john@example.com', 

isActive: true },
    �{ id: 2, name: 'Jane Smith', email: 'jane@example.com', 

isActive: false },
  ]);

  const toggleUserActivity = (id) => {
    setUsers((prevUsers) =>
      prevUsers.map((user) =>
        �user.id === id ? { ...user, isActive: !user.isActive 

} : user
      )
    );
  };

  return (
    <div>
      <h1>User List</h1>
      �<UserList users={users} toggleActivity={toggleUser 

Activity} />
    </div>
  );
}

export default App;

Chapter 3  Components, Props, and State



60

The UserList component acts as a middle layer, receiving the list 

of users and the toggle function as props from the App component. It 

iterates through the user list using the map method and renders a User 

component for each user. This component demonstrates how to pass data 

and actions to child components via props as shown in Listing 3-13. The 

implementation of the UserList component is as follows.

Listing 3-13.  User List Functional Components

// UserList.jsx
import React from 'react';
import User from './User';
import './UserList.css';

const UserList = ({ users, toggleActivity }) => {
  return (
    <div className="user-list-container">
      <h1 className="user-list-title">User List</h1>
      {users.map((user) => (
        <User
          key={user.id}
          id={user.id}
          name={user.name}
          email={user.email}
          isActive={user.isActive}
          toggleActivity={toggleActivity}
        />
      ))}
    </div>
  );
}

export default UserList;

Chapter 3  Components, Props, and State



61

Next, the User component displays individual user details. It uses 

destructuring to extract props like id, name, email, isActive, and 

toggleActivity. This component renders the user’s name, email, and 

activity status. It also includes a button that, when clicked, calls the 

toggleActivity function with the user’s ID as an argument, allowing 

the parent component to update the user’s state as shown in Listing 3-14. 

Here’s the implementation of the User component.

Listing 3-14.  User Functional Components

// src/components/User.jsx
import React from 'react';
import PropTypes from 'prop-types';
import './UserList.css';

const User = ({ id, name, email, isActive, 
toggleActivity }) => {
  return (
    <div className="user-card">
      <h2>{name}</h2>
      <p>Email: {email}</p>
      �<p className="user-card-status">Status: {isActive ? 

'Active' : 'Inactive'}</p>
      <button
        �className={`user-card-button ${isActive ? 'deactivate' 

: 'activate'}`}
        onClick={() => toggleActivity(id)}
      >
        {isActive ? 'Deactivate' : 'Activate'}
      </button>
    </div>
  );
}

Chapter 3  Components, Props, and State



62

// PropTypes and defaultProps (optional, as in your 
original code)
User.propTypes = {
  id: PropTypes.number.isRequired,
  name: PropTypes.string.isRequired,
  email: PropTypes.string.isRequired,
  isActive: PropTypes.bool,
  toggleActivity: PropTypes.func.isRequired,
};

User.defaultProps = {
  isActive: false,
};

export default User;

The User component showcases several key best practices. It uses 

PropTypes to enforce type checking for the props it receives, ensuring 

that the component behaves as expected and avoids runtime errors. The 

component also defines a default prop for isActive, setting its value to 

false if it’s not explicitly provided. By using destructuring, the component 

avoids repetitive references to props, keeping the code clean and readable.

When you run the application, the App component renders the 

UserList component, which in turn renders a User component for each 

user in the list. Each User displays the user’s name, email, and activity 

status, with a button to toggle the activity status between “Active” and 

“Inactive.” Clicking the button triggers the toggleUserActivity function 

in the App component, updating the state and re-rendering the UI with the 

updated status. Figure 3-8 shows the rendered output of the application 

with a list of users and their respective activity statuses.

Chapter 3  Components, Props, and State



63

Figure 3-8.  Rendered output of the application displaying a user list 
with activity toggle functionality

This application demonstrates the practical application of React 

concepts like state management, props, default props, destructuring, 

and PropTypes. By following best practices, you can create reusable, 

predictable, and maintainable components that are easy to scale. With this 

understanding, you’re now well equipped to build dynamic, interactive 

applications in React.

�Summary
In this chapter, we explored the fundamental building blocks of React: 

components, props, and state. Components, which are the core units 

of a React application, allow you to divide your user interface into 

smaller, reusable, and self-contained pieces. We discussed two types 

of components—functional components, which are lightweight and 

modern, and class components, which are older but still relevant for 

Chapter 3  Components, Props, and State



64

legacy codebases. Both types of components serve to render dynamic UI 

elements, with functional components being the preferred choice for new 

development due to their simplicity and the introduction of Hooks.

We delved into props, the mechanism for passing data from parent 

components to child components. Props are immutable, making 

them ideal for customizing and reusing components while ensuring a 

unidirectional data flow. Using props, we demonstrated how to pass user 

information to child components, enabling dynamic content generation. 

To make our code cleaner and more readable, we also introduced the 

concept of destructuring props, a best practice that simplifies how props 

are accessed within a component.

The chapter also introduced state, a mechanism for managing 

component-specific data that can change over time. Unlike props, state 

is mutable and allows components to exhibit interactive behavior, such 

as toggling user activity or updating form fields. By keeping state local 

to the component that owns it and updating it immutably, we ensured 

a predictable and maintainable structure. We also explored how state 

and props work together to create dynamic applications by using state to 

manage data and props to pass it down the component tree.

To tie all these concepts together, we built a small application—a User 
List Application—that demonstrated how to use components, props, and 

state in harmony. This practical example showcased how to

•	 Pass data from parent to child components using props

•	 Use state to manage user activity and update the UI 

dynamically

•	 Implement best practices like destructuring props, 

validating data with PropTypes, and setting default 
props to ensure robust and error-free components

Chapter 3  Components, Props, and State



65

Finally, we emphasized best practices for managing state and props 

effectively, including keeping state local, avoiding overuse of state, and 

ensuring data validation. These practices not only make your React 

components easier to maintain but also improve performance and 

reliability.

With this chapter, you now have a solid understanding of how to create 

and manage components, work with props to pass data between them, and 

leverage state for dynamic interactions. These concepts form the backbone 

of React development, enabling you to build reusable, interactive, and 

scalable applications. In the next chapter, we’ll delve into JSX and element 
rendering, where you’ll learn how to combine JavaScript with HTML- 

like syntax to define the structure of your components and render them 

dynamically.

Chapter 3  Components, Props, and State



67© Nitesh Upadhyaya 2025 
N. Upadhyaya, Advanced Front-End Development,  
https://doi.org/10.1007/979-8-8688-1318-4_4

CHAPTER 4

JSX and Element 
Rendering
In React, JSX (JavaScript XML) is the syntax that allows us to write HTML- 

like code within JavaScript. JSX is an essential part of React because it 

makes code more readable, intuitive, and directly linked to the visual 

structure of your application. This chapter will cover the basics of JSX, 

how to render elements, how to make use of JavaScript expressions within 

JSX to create dynamic content, and how to use props in JSX for dynamic 

rendering. We’ll also dive into some advanced topics, such as React 

Fragments, inline styling, and conditional rendering.

By the end of this chapter, you’ll understand how to use JSX effectively 

and render elements based on dynamic data.

�Introduction to JSX
JSX, short for JavaScript XML, is a syntax extension for JavaScript that 

allows developers to write code resembling HTML directly within their 

JavaScript files. Despite its similarity to HTML, JSX is not HTML. Instead, 

it’s a powerful abstraction that combines the visual structure of HTML 

with the dynamic capabilities of JavaScript. Before JSX is rendered to 

the browser, tools like Babel compile it into standard JavaScript, making 

it understandable by the browser’s JavaScript engine. This conversion 

https://doi.org/10.1007/979-8-8688-1318-4_4#DOI


68

process bridges the gap between a declarative syntax that is easy for 

developers to read and JavaScript’s imperative execution. For example, 

consider the JSX snippet in Listing 4-1.

Listing 4-1.  Sample JSX Snippet

const element = <h1>Hello, World!</h1>;

Here, <h1>Hello, World!</h1> looks like an HTML element but is 

JSX. Behind the scenes, React’s compiler translates this into a React.
createElement function call, which generates an object representing a 

DOM node. This process ensures that JSX is not only readable but also 

performant and compatible with React’s virtual DOM.

The primary advantage of JSX is that it enables developers to write UI 

code in a declarative manner, where the focus is on what the UI should 
look like rather than the procedural steps to achieve it. By allowing 

you to combine markup with JavaScript logic, JSX creates a seamless 

development experience, empowering you to build complex UIs with 

clarity and efficiency.

�Basic Rules of JSX
JSX, while resembling HTML, follows its own set of rules and syntax 

conventions to ensure seamless integration with JavaScript and React’s 

component system. Understanding these rules is essential to avoid 

common errors and fully leverage JSX’s power in building dynamic user 

interfaces.

One of the foundational rules of JSX is that every JSX expression must 

have only one root element. This requirement enforces a clear hierarchy 

and ensures that React can correctly manage the virtual DOM. For 

instance, the JSX snippet in Listing 4-2 is invalid because it attempts to 

return two sibling root elements.

Chapter 4  JSX and Element Rendering



69

Listing 4-2.  Invalid JSX Expression

// This will cause an error
const invalidElement = <h1>Hello</h1><p>World</p>;

To fix this issue, wrap both elements within a single parent element, 

such as a <div>. This creates a single root element, satisfying JSX’s 

requirements as illustrated in Listing 4-3.

Listing 4-3.  Valid JSX Expression

const validElement = (
  <div>
    <h1>Hello</h1>
    <p>World</p>
  </div>
);

While this example uses a <div> as the parent element, modern React 

allows the use of a shorthand syntax called fragments (<> and </>), which 

avoids adding unnecessary wrapper elements to the DOM as shown in 

Listing 4-4.

Listing 4-4.  Valid JSX Expression with Fragments

const validElementWithFragment = (
<>
    <h1>Hello</h1>
    <p>World</p>
</>
);

Chapter 4  JSX and Element Rendering



70

Another critical rule of JSX is that every tag must be closed, even for 

self-closing elements like <img> or <br>. While HTML allows unclosed 

tags, JSX enforces stricter syntax to avoid ambiguities. For example, an 

<img> tag must include a forward slash (/) before the closing angle bracket, 

as shown in Listing 4-5.

Listing 4-5.  Self-Closing JSX Expression

const element = <img src="logo.png" alt="Logo" />;

This syntax ensures that JSX is consistent and unambiguous, especially 

when dealing with nested components or complex UI structures.

One of JSX’s most powerful features is the ability to embed JavaScript 
expressions directly within the mark up using curly braces ({}). This 

allows you to dynamically insert values, call functions, or evaluate 

expressions, enabling a high degree of flexibility in defining your UI. For 

instance, you can use JavaScript variables to personalize a greeting as 

shown in Listing 4-6.

Listing 4-6.  Embedded JS into JSX Expression Using Curly Braces

const name = "Alice";
const element = <h1>Hello, {name}!</h1>;
// Outputs: Hello, Alice!

Tip  JSX expressions are not strings. They are JavaScript 
expressions that compile into React.createElement( ) calls, which 
build the component tree for React.

These curly braces can contain any valid JavaScript expression, 

including function calls, conditional statements, and mathematical 

operations as shown in Listing 4-7 with additional examples.

Chapter 4  JSX and Element Rendering



71

Listing 4-7.  JSX Expression Additional Examples

const currentTime = new Date().toLocaleTimeString();
const element = <p>The current time is {currentTime}.</p>;

This dynamic nature makes JSX far more powerful than static HTML, 

as it allows you to integrate logic and data directly into your markup. 

It’s important to note that JSX expressions are not strings. They are 

JavaScript objects that are transformed into React.createElement 

function calls by React’s compiler. This process constructs the component 

tree, allowing React to efficiently manage updates to the DOM.

By adhering to these basic rules, JSX provides a robust yet flexible 

syntax for building user interfaces. These rules not only ensure that 

your JSX code is syntactically correct but also make your components 

predictable and easy to debug. As we move forward, these principles 

will form the foundation for creating dynamic and interactive React 

applications.

�Rendering Elements
In React, rendering elements is the process of defining what should appear 

on the screen. Elements are the smallest building blocks of the React user 

interface, comparable to DOM nodes in the traditional HTML DOM. These 

elements describe what you want to see on the screen at any point in 

time, and React ensures that the actual DOM reflects these descriptions. 

Rendering is at the heart of React’s declarative programming paradigm, 

allowing you to focus on describing the UI without worrying about how to 

manipulate the DOM.

To render elements, React relies on the ReactDOM.render method. 

This method takes two arguments: the element to render and the DOM 

container where the element should be displayed. Let’s explore rendering 

with practical examples.

Chapter 4  JSX and Element Rendering



72

�Rendering a Single Element
Rendering a single element is straightforward. Consider the example 

in Listing 4-8, where we render a simple “Hello, React!” message to 

the screen.

Listing 4-8.  Rendering One Element

import React from 'react';
import ReactDOM from 'react-dom';

const element = <h1>Hello, React!</h1>;

ReactDOM.render(element, document.getElementById('root'));

In this example, the constant element holds a JSX representation of a 

React element. The ReactDOM.render method inserts this element into the 

DOM container with the ID root. If you inspect the browser, you’ll find that 

the rendered output appears as shown below:

<div id="root">
  <h1>Hello, React!</h1>
</div>

Here, React efficiently translates your JSX into actual DOM nodes and 

updates the browser display accordingly.

�Rendering Multiple Elements
To render multiple elements, they must be wrapped in a single root 

element. This is because React enforces a single root element in JSX 

to maintain a clear and predictable structure. You can use a <div> as a 

wrapper or, for cleaner code, utilize React fragments (<> </>) to avoid 

adding unnecessary elements to the DOM. Here’s an example that renders 

multiple elements in Listing 4-9.

Chapter 4  JSX and Element Rendering



73

Listing 4-9.  Rendering Many Elements

const element = (
  <>
    <h1>Hello, React!</h1>
    <p>Welcome to learning JSX!</p>
  </>
);

ReactDOM.render(element, document.getElementById('root'));

In this example, the <h1> and <p> elements are wrapped inside a 

fragment, ensuring that they share a single root. React renders these 

elements into the DOM container specified. The resulting DOM structure 

looks like Listing 4-10.

Listing 4-10.  Rendering Many Elements DOM Visualization

<div id="root">
  <h1>Hello, React!</h1>
  <p>Welcome to learning JSX!</p>
</div>

This approach helps keep your DOM clean and free from unnecessary 

wrappers, which is especially useful when dealing with large, nested 

components.

�React’s Efficient Rendering
One of the standout features of React is its ability to render changes efficiently. 

Unlike traditional DOM manipulation, where entire sections of the DOM 

might be replaced or re-rendered, React compares the current state of the 

virtual DOM to its previous state. It identifies the parts of the DOM that have 

changed and updates only those parts. This process, known as reconciliation, 

ensures that React applications are not only fast but also highly responsive.

Chapter 4  JSX and Element Rendering



74

For instance, if you update the content of a specific element, React 

will only update that particular DOM node rather than re-rendering the 

entire page. This selective update mechanism is a key reason why React is 

considered more performant than traditional DOM manipulation libraries.

Note R eact re-renders only the parts of the DOM that have 
changed, making it more efficient than traditional DOM manipulation.

�Embedding JavaScript Expressions in JSX
One of JSX’s most powerful features is its ability to embed JavaScript 

expressions directly into your code using curly braces ({}). This capability 

allows you to seamlessly integrate dynamic values, perform calculations, 

or even call functions within your JSX, making it more flexible and 

dynamic than static HTML.

�Embedding Variables
Variables in JSX can be embedded directly into the markup, enabling you 

to dynamically populate content. For instance, you might want to display 

a personalized welcome message based on a user’s name. You can achieve 

this by embedding the variable representing the name inside curly braces 

as shown in Listing 4-11.

Listing 4-11.  Embedding Variables

const name = "React Developer";
const element = <h1>Welcome, {name}!</h1>;

Chapter 4  JSX and Element Rendering



75

In this example, the name variable is dynamically inserted into the 

JSX, and React renders the greeting: Welcome, React Developer! This 

demonstrates how JSX allows you to bind JavaScript variables to your user 

interface effortlessly.

�Conditional Rendering
JSX also supports conditional rendering, enabling you to display different 

elements or content based on a condition. The ternary operator is 

commonly used for this purpose, as it provides a concise way to implement 

conditional logic directly within JSX as illustrated in Listing 4-12.

Listing 4-12.  Conditional Rendering

const isLoggedIn = true;
const element = <h1>{isLoggedIn ? "Welcome back!" : "Please 
sign in."}</h1>;

Here, the isLoggedIn variable determines whether the user is greeted 

with “Welcome back!” or prompted to “Please sign in.” React evaluates the 

JavaScript expression inside the curly braces and renders the appropriate 

message. Conditional rendering is particularly useful in creating 

interactive user interfaces, such as displaying login/logout buttons or user- 

specific content.

�Calling Functions
In addition to embedding variables, JSX allows you to call JavaScript 

functions to generate content dynamically. This is particularly helpful for 

scenarios like formatting data or combining multiple variables as shown in 

Listing 4-13.

Chapter 4  JSX and Element Rendering



76

Listing 4-13.  JavaScript Function in JSX

const formatName = (user) => {
  return `${user.firstName} ${user.lastName}`;
}

const user = { firstName: "Alice", lastName: "Doe" };
const element = <h1>Hello, {formatName(user)}!</h1>;

In this example, the formatName function takes a user object and 

returns the full name. The JSX then calls this function inside curly braces, 

dynamically generating the greeting: Hello, Alice Doe!. By leveraging 

functions, you can keep your JSX clean and focus on logic within separate 

methods, improving code readability and maintainability.

Caution  JSX expressions should remain simple. Avoid embedding 
complex logic directly in JSX; instead, move it to a function or method 
for better readability.

�Using Props for Dynamic Rendering
Props play a crucial role in React by allowing parent components to 

pass data to child components, enabling the rendering of dynamic, 

personalized content. When combined with JSX, props provide a powerful 

mechanism for creating flexible and reusable components. For example, 

a parent component can pass a name prop to a child component to render 

personalized greetings as shown in Listing 4-14.

Chapter 4  JSX and Element Rendering



77

Listing 4-14.  Passing Props to a Functional Component

const Welcome = (props) => {
  return <h1>Hello, {props.name}!</h1>;
}

const element = <Welcome name="Alice" />;
ReactDOM.render(element, document.getElementById('root'));

In this example, the name prop is embedded within the JSX using curly 

braces ({}), allowing the Welcome component to display a customized 

message based on the value passed. To make the code cleaner, you can 

destructure props directly in the function’s parameter list as shown in 

Listing 4-15.

Listing 4-15.  Destructuring Props in Functional Component

const Welcome = ({ name }) => {
  return <h1>Hello, {name}!</h1>;
}

Similarly, for class components, props are accessed via the this.props 

object, as shown in Listing 4-16.

Listing 4-16.  Destructuring Props in Class Components

class Welcome extends React.Component {
  render() {
    return <h1>Hello, {this.props.name}!</h1>;
  }
}

By integrating props seamlessly into JSX, React enables components to 

render personalized and dynamic content based on the data they receive. 

This approach fosters reusability, as components can adapt to different 

contexts without modification.

Chapter 4  JSX and Element Rendering



78

Tip  Using props effectively allows you to create flexible and 
reusable components that can adapt based on the data they receive.

�Advanced JSX Techniques
As you grow more comfortable with JSX, you’ll encounter scenarios that 

require more advanced techniques to handle styling, grouping, and 

conditional rendering effectively. These techniques not only make your 

code cleaner but also enhance its readability and maintainability.

�React Fragments for Grouping Elements
In JSX, you must wrap multiple sibling elements in a single parent element 

to satisfy its requirement for a single root. While you could use a <div> as 

a wrapper, doing so unnecessarily adds extra nodes to the DOM, which 

can clutter your output and affect performance. React Fragments provide 

a cleaner solution by allowing you to group multiple elements without 

adding extra nodes as shown in Listing 4-17.

Listing 4-17.  Grouping Fragment Using React Fragments

function App() {
  return (
    <>
      <h1>Welcome to React</h1>
      <p>Enjoy learning JSX!</p>
    </>
  );
}

Chapter 4  JSX and Element Rendering



79

In this example, the empty angle brackets (<> </>) are shorthand 

for React Fragments. They group the <h1> and <p> elements without 

introducing an unnecessary <div> in the DOM.

�Inline Styling in JSX
JSX supports inline styling, but unlike HTML, styles must be defined 

as JavaScript objects with camel-cased property names. This approach 

ensures that styles are dynamic and programmatically controllable as 

shown in Listing 4-18.

Listing 4-18.  Inline Style JSX

const element = <h1 style={{ color: 'blue', fontSize: '20px' 
}}>Hello, React!</h1>;

Here, the style attribute accepts a JavaScript object, allowing you to 

define styles directly within your JSX. Inline styling is useful for dynamic 

styles that depend on variables or user interactions.

�Applying CSS Classes in JSX
To apply CSS classes to elements, JSX uses the className attribute instead 

of class as illustrated in Listing 4-19. This distinction prevents conflicts 

with the class keyword in JavaScript.

Listing 4-19.  JSX with CSS Classes

const element = <h1 className="header">Styled Header</h1>;

By using className, you can style your components with external 

CSS, combining the declarative power of JSX with the flexibility of 

traditional CSS.

Chapter 4  JSX and Element Rendering



80

�Using JSX Spread Attributes
The spread operator (...) in JSX allows you to pass all properties of an 

object as props to a component, making it a convenient way to handle 

multiple props dynamically as illustrated in Listing 4-20.

Listing 4-20.  Spread Operator with JSX

const user = { name: "Alice", age: 25 };
const element = <UserProfile {...user} />;

In this example, all properties of the user object (name and age) 

are passed to the UserProfile component as props. This technique 

is particularly useful when dealing with components that require 

numerous props.

�Conditional Rendering with the Logical AND (&&) 
Operator
JSX allows you to conditionally render elements using the logical && 

operator. This approach renders the second expression only if the first is 

true, providing a concise alternative to ternary operators when there’s no 

else case as shown in Listing 4-21.

Listing 4-21.  Conditional Rendering with Logical AND (&&) 

Operator

const showMessage = true;
const element = <div>{showMessage && <p>Welcome to our site! 
</p>}</div>;

In this example, the <p> element is rendered only if showMessage 

is true. This technique is a common pattern for rendering optional UI 

elements, such as notifications or tooltips.

Chapter 4  JSX and Element Rendering



81

�Rendering Lists of Elements
When rendering lists in React, you use the map method to iterate over 

an array and return a list of JSX elements. To optimize rendering, React 

requires that each list item has a unique key prop. This helps React 

efficiently update the DOM by tracking which items have changed, been 

added, or been removed as shown in Listing 4-22.

Listing 4-22.  Rendering List Using Map

const numbers = [1, 2, 3];
const listItems = numbers.map((number) =>  
<li key={number}>{number}</li>);
const element = <ul>{listItems}</ul>;

In this example, the array of numbers is mapped to <li> elements, each 

with a unique key. Without unique keys, React cannot accurately identify 

updates, which may lead to unexpected behavior.

Note  Keys help React identify which items have changed, 
enhancing rendering performance.

�Example: Building a User 
Dashboard Application
The User Dashboard will display a greeting, user information, and a list of 

tasks assigned to the user. It will also use conditional rendering to show a 

“No tasks available” message if the task list is empty.

Chapter 4  JSX and Element Rendering



82

�Features

	 1.	 Display user data (name, email) using props.

	 2.	 Render a dynamic task list with conditional 

rendering.

	 3.	 Use React Fragments to group elements without 

adding unnecessary DOM nodes.

	 4.	 Style elements using both inline styles and CSS 

classes.

	 5.	 Use state to manage the list of tasks and allow users 

to add or remove tasks.

Here’s how the complete application might look. Listing 4-23 illustrates 

the code for the entry point.

Listing 4-23.  Interactive User Dashboard

// UserDashboard.jsx
import React, { useState } from "react";
import "./App.css"; // Import CSS for styling

function UserDashboard({ user }) {
  const [tasks, setTasks] = useState(user.tasks);

  const addTask = () => {
    const newTask = `Task ${tasks.length + 1}`;
    setTasks([...tasks, newTask]);
  };

  const removeTask = (index) => {
    const updatedTasks = tasks.filter((_, i) => i !== index);
    setTasks(updatedTasks);
  };

Chapter 4  JSX and Element Rendering



83

  return (
    <>
      {/* Greeting Section */}
      �<header style={{ textAlign: "center", color: "blue", 

margin: "20px 0" }}>
        <h1>Welcome, {user.name}!</h1>
        <p>Your email: {user.email}</p>
      </header>

      {/* Task Section */}
      <main className="dashboard">
        <h2>Task List</h2>
        {tasks.length > 0 ? (
          <ul>
            {tasks.map((task, index) => (
              <li key={index}>
                {task}{" "}
                <button
                  onClick={() => removeTask(index)}
                  style={{ marginLeft: "10px" }}
                >
                  Remove
                </button>
              </li>
            ))}
          </ul>
        ) : (
          <p>No tasks available. Add a task to get started!</p>
        )}

Chapter 4  JSX and Element Rendering



84

        <button onClick={addTask} className="add-task">
          Add Task
        </button>
      </main>
    </>
  );
}

export default function App() {
  const user = {
    name: "Alice Doe",
    email: "alice@example.com",
    tasks: ["Buy groceries", "Finish React project"],
  };

  return <UserDashboard user={user} />;
}

Figure 4-1 showcases the User Dashboard in action, displaying the 

greeting, user details, and a dynamic task list.

Chapter 4  JSX and Element Rendering



85

Figure 4-1.  User Dashboard showing a personalized greeting, user 
details, and a task list with add and remove functionality

The UserDashboard component uses React Fragments (<> </>) to 

group the greeting and task sections without adding unnecessary DOM 

elements, ensuring a clean structure. The user object is passed as a prop, 

allowing dynamic rendering of the user’s name, email, and tasks. For 

state management, the useState hook is employed to manage the task 

list, enabling users to add or remove tasks with dynamic updates to the 

UI. The application demonstrates conditional rendering by displaying a 

Chapter 4  JSX and Element Rendering



86

message encouraging the user to add tasks when the tasks array is empty. 

The task list is rendered dynamically using the map method, with each 

task assigned a unique key for efficient updates and rendering. Finally, 

the dashboard incorporates styling through a combination of inline styles 

(e.g., for the header) and CSS classes (e.g., for the “Add Task” button), 

showcasing flexibility in React styling approaches.

For simplicity and clarity, the entire User Dashboard application 

has been implemented in a single App.jsx file. However, in a real-world 

project, it is a best practice to break your application into smaller, reusable 

components. For example, you could create separate components for the 

header, task list, and task item, each handling its specific functionality and 

styling.

Here’s an example of how you might structure these components:

	 1.	 UserHeader.jsx: Handles displaying the user’s 

name and email

	 2.	 TaskList.jsx: Manages and renders the list of tasks

	 3.	 TaskItem.jsx: Represents individual tasks with 

their respective actions (e.g., remove task)

These components would then be imported and rendered in App.jsx 

to keep the code organized and maintainable. This modular approach not 

only improves readability but also makes testing and reusing components 

across different parts of your application much easier.

By presenting the entire application in a single file, we aim to focus on 

teaching key concepts without introducing complexity. As you advance, 

you’ll see how separating components into individual files helps manage 

larger applications effectively.

Chapter 4  JSX and Element Rendering



87

�Summary
In this chapter, we delved into JSX, a syntax extension for JavaScript that is 

integral to React development. By combining JavaScript with HTML-like 

syntax, JSX simplifies the process of writing and maintaining React code, 

making it both more readable and powerful. We started by understanding 

the basic rules of JSX, emphasizing that every JSX expression must have 

a single root element and that all tags must be properly closed. These 

foundational rules ensure that your React code adheres to the structural 

integrity required by the library.

Next, we explored how React renders elements to the DOM using the 

ReactDOM.render method. This process allows developers to efficiently 

define what appears on the screen, whether it’s a single element or a group 

of elements wrapped in React Fragments to avoid unnecessary DOM 

nodes. Additionally, we discussed embedding JavaScript expressions 

within JSX, highlighting how variables, functions, and conditional logic 

can dynamically influence what is rendered, enhancing the flexibility and 

interactivity of your components.

The chapter also revisited props, illustrating how they enable dynamic 

rendering by passing data from parent components to child components. 

Through practical examples, we demonstrated how props can be de- 

structured for cleaner and more concise code, and we reviewed their 

usage in both functional and class components. While props remain a 

cornerstone of React’s reusability, this chapter connected them explicitly 

with JSX to showcase their practical implementation.

Toward the end, we introduced advanced JSX techniques that further 

extend its capabilities. These included React Fragments for grouping 

elements without extra DOM nodes, inline styling for dynamic and 

programmatic control over styles, and the use of the spread operator to 

pass multiple props at once. We also examined conditional rendering 

and the efficient handling of lists using unique keys, reinforcing React’s 

declarative nature and rendering optimization.

Chapter 4  JSX and Element Rendering



88

By integrating these concepts into a cohesive sample application, such 

as the User Dashboard, you saw how to apply JSX rules, dynamic props, 

state, and advanced rendering techniques to build an interactive and 

modular user interface. The chapter not only laid a strong foundation for 

working with JSX but also emphasized how it serves as a bridge between 

JavaScript’s logic and HTML’s structure.

With a solid understanding of JSX and rendering elements, you are 

now prepared to tackle more complex topics. In the next chapter, we’ll dive 

into handling events and conditional logic, equipping your components 

with the tools to respond to user interactions and adapt dynamically to 

changing states. As we progress, your ability to build truly interactive and 

responsive applications will take center stage.

Chapter 4  JSX and Element Rendering



89© Nitesh Upadhyaya 2025 
N. Upadhyaya, Advanced Front-End Development,  
https://doi.org/10.1007/979-8-8688-1318-4_5

CHAPTER 5

Handling Events 
and Conditional 
Rendering
Interactivity and dynamic user interfaces are central to modern web 

applications, and React excels in enabling both. Event handling allows 

you to manage user actions like clicks and form submissions, using a 

clean, declarative syntax tailored for React’s components. Conditional 

rendering complements this by dynamically adjusting the UI based on the 

application’s state or user input.

In this chapter, we’ll explore event handling in functional and class 

components, highlighting key techniques like state management with 

useState and context binding. We’ll also cover conditional rendering 

methods, including if statements, ternary operators, and logical operators, 

with practical examples. To tie it all together, we’ll build an interactive 

login form that demonstrates these concepts in action.

By the end of this chapter, you’ll be equipped to handle user 

interactions and create dynamic, responsive React applications.

https://doi.org/10.1007/979-8-8688-1318-4_5#DOI


90

�Introduction to Event Handling
Event handling in React is inspired by JavaScript’s traditional event 

model but is tailored for the React environment. Events like clicks, form 

submissions, or keyboard presses can be handled using React’s declarative 

approach, making your code cleaner and easier to maintain. React event 

handlers differ from their JavaScript counterparts in two significant 

ways: they use camelCase naming conventions (e.g., onClick instead 

of onclick), and instead of passing a string of code, you provide actual 

functions as handlers. These enhancements ensure better integration with 

React’s component model and lifecycle.

Similarly, conditional rendering allows you to dynamically adjust 

what is displayed on the screen based on the application’s state or user 

input. Whether you need to show a “Loading” spinner while waiting for 

data or display alternate content for logged-in vs. guest users, conditional 

rendering provides the flexibility to create personalized user experiences.

By combining event handling and conditional rendering, you can build 

robust and interactive web applications that respond seamlessly to user 

actions. This chapter will cover the core principles of handling events and 

explore the various ways to implement conditional rendering, ensuring 

you have the tools to build dynamic, user-driven interfaces.

Note  Remember to use camelCase for event handlers in React, 
like onClick and onChange, instead of the lowercase JavaScript 
conventions. This ensures that React recognizes them as valid events.

�Event Handling in Functional Components
In functional components, event handling becomes simpler and more 

intuitive with the use of React’s useState hook. This hook allows you 

to manage the component’s state without the need for class syntax or 

Chapter 5  Handling Events and Conditional Rendering



91

explicitly binding this. Functional components are now the preferred way 

to handle events in modern React development because they are cleaner, 

more concise, and easier to maintain. Consider the example in Listing 5-1, 

where a basic click counter increments each time a button is clicked.

Listing 5-1.  Click Counter

// Counter.jsx
import React, { useState } from 'react';
const ClickCounter =()=> {
  const [count, setCount] = useState(0);
  const handleClick = () => {
    setCount(count + 1);
  };
  return (
    <div>
      <p>You clicked {count} times</p>
      <button onClick={handleClick}>Click me</button>
    </div>
  );
}
export default ClickCounter;

In this example, the handleClick function is passed as the onClick 

event handler for the button. When the button is clicked, handleClick 

updates the count state variable using the setCount function provided 

by useState. React then re-renders the component, displaying the 

updated count.

Chapter 5  Handling Events and Conditional Rendering



92

Tip  For functional components, consider using arrow functions 
in event handlers to keep your code concise. However, avoid inline 
arrow functions in cases where performance is a concern, as they 
create new functions on every render.

�Event Handling in Class Components
In class components, event handling introduces additional complexity 

due to the need to bind methods to the component instance. Without 

this explicit binding, event handlers lose their context, resulting in 

errors. However, with proper understanding, class components can still 

effectively manage events and state changes. The example in Listing 5-2 

demonstrates toggling a button’s state between “ON” and “OFF” using a 

class component.

Listing 5-2.  Toggle Button

// Toggle.jsx
import React, { Component } from 'react';
class Toggle extends Component {
  constructor(props) {
    super(props);
    this.state = { isToggled: false };
    this.handleToggle = this.handleToggle.bind(this);
  }
  handleToggle() {
    �this.setState(prevState => ({ isToggled: !prevState.

isToggled }));
  }

Chapter 5  Handling Events and Conditional Rendering



93

  render() {
    return (
      <button onClick={this.handleToggle}>
        {this.state.isToggled ? 'ON' : 'OFF'}
      </button>
    );
  }
}
export default Toggle;

Here, the handleToggle method is explicitly bound to the class 

instance in the constructor using this.handleToggle = this.
handleToggle.bind(this). Each click on the button toggles the isToggled 

state between true and false, which changes the button’s label from “ON” 

to “OFF” and vice versa.

Caution A void forgetting to bind this in class component 
methods that handle events, such as this.handleClick = 
this.handleClick.bind(this);, in the constructor. Without 
this binding, your event handler won’t have the correct context, 
causing errors.

�Passing Parameters to Event Handlers
In many cases, event handlers need to perform context-specific actions 

based on additional data or parameters. React allows you to pass 

parameters to event handlers by wrapping the handler function in 

an arrow function. This ensures the handler receives the appropriate 

Chapter 5  Handling Events and Conditional Rendering



94

arguments without being immediately invoked when the component 

renders. Consider the example in Listing 5-3, which demonstrates how to 

greet a user by passing their name as a parameter.

Listing 5-3.  Greeting User with a Parameter

// GreetUser.jsx
const greetUser = (name)=> {
  alert(`Hello, ${name}`);
}

export default function App() {
  return (
    <div>
      <button onClick={() => greetUser(("John")}>Greet</button>
    </div>
  );
}

In this example, the greetUser function accepts a name parameter 

and displays a personalized greeting in an alert dialog. The onClick event 

handler uses an arrow function to pass the string “John” as an argument to 

greetUser. This ensures that the function is called only when the button is 

clicked, rather than immediately during rendering.

�Why Use Arrow Functions for 
Passing Parameters?
React’s event handlers are designed to trigger functions when the 

corresponding user action occurs. However, directly calling a function with 

arguments inside the onClick attribute (e.g., onClick={greetUser("John")}) 

would execute the function immediately during the component’s render 

Chapter 5  Handling Events and Conditional Rendering



95

phase. By wrapping the function in an arrow function (e.g., onClick={() => 
greetUser("John")}), you create a new function that is invoked only when 

the event is triggered. This approach is both intuitive and powerful, allowing 

you to add contextual data to your event handlers while maintaining React’s 

declarative syntax.

�Passing Multiple Parameters
Let’s extend this concept by passing multiple parameters. Consider a 

scenario where you want to display a personalized message with both the 

user’s name and their age as shown in Listing 5-4.

Listing 5-4.  Greeting a User with Multiple Parameters

// GreetUser.jsx
const greetUser = (name, age) => {
  alert(`Hello, ${name}! You are ${age} years old.`);
}

export default function App() {
  return (
    <div>
      �<button onClick={() => greetUser("Alice", 

30)}>Greet</button>
    </div>
  );
}

In this example, the greetUser function takes two parameters: name 

and age. The arrow function within the onClick event handler passes both 

parameters to greetUser, allowing the function to construct a detailed, 

dynamic message.

Chapter 5  Handling Events and Conditional Rendering



96

Note  When passing parameters to event handlers, 
wrapping them in an arrow function (e.g., onClick={() => 
handleClick(param)}) ensures they are called only when 
triggered, rather than immediately.

�Conditional Rendering
Conditional rendering is a fundamental concept in React that enables 

components to dynamically adjust their output based on specific logic 

or conditions. By controlling what is rendered on the screen, you can 

provide a highly interactive and personalized user experience. React offers 

several approaches to implement conditional rendering, depending on the 

complexity of the condition and the desired readability of your code.

�Using if Statements
When dealing with more complex conditions, using if statements outside 

of JSX provides a clear and straightforward way to control what is rendered. 

For instance, consider the example in Listing 5-5, where a message is 

displayed based on the user’s login status.

Listing 5-5.  Conditional Rendering Using if Statements

// Message.jsx
const Message = (props) => {
  const isLoggedIn = props.isLoggedIn;
  if (isLoggedIn) {
    return <h1>Welcome back!</h1>;

Chapter 5  Handling Events and Conditional Rendering



97

  } else {
    return <h1>Please sign in.</h1>;
  }
}

In this example, the Message component checks the value of 

isLoggedIn. If it is true, it renders a welcome message; otherwise, it 

prompts the user to sign in. This approach is particularly useful when the 

conditional logic is complex or spans multiple lines.

�Using the Ternary Operator
For simpler conditions, the ternary operator provides a concise inline 

alternative to if statements. It allows you to directly embed the condition 

and its corresponding outputs within JSX. The example in Listing 5-6 

illustrates this.

Listing 5-6.  Conditional Rendering Using the Ternary Operator

// Message.jsx

const Message = (props) => {
  const isLoggedIn = props.isLoggedIn;
  �return isLoggedIn ? <h1>Welcome back!</h1> : <h1>Please sign 
up.</h1>;

}

Here, the Greeting component returns one of two elements based 

on the value of isLoggedIn. The ternary operator is ideal for short, 

straightforward conditions that fit neatly on a single line, making the code 

both compact and readable.

Chapter 5  Handling Events and Conditional Rendering



98

�Using the Logical && Operator
When you want to render content only if a condition is true, the logical && 

operator offers a minimalistic solution. This method is particularly useful 

when there is no “else” case. The example in Listing 5-7 illustrates this.

Listing 5-7.  Conditional Rendering Using the Logical && Operator

// Mailbox.jsx
const Mailbox = (props) => {
  const unreadMessages = props.unreadMessages;
  return (
    <div>
      <h1>Hello!</h1>
      �{unreadMessages.length > 0 && <h2>You have 

{unreadMessages.length} unread messages.</h2>}
    </div>
  );
}

In this example, the <h2> element is rendered only if unreadMessages.
length is greater than zero. If the array is empty, nothing is displayed. This 

concise syntax avoids the need for additional if statements, keeping the 

code clean and efficient.

Caution  Be cautious when using conditional rendering with 
complex expressions. Overly complex conditions can make your 
JSX difficult to read and debug. If your conditional logic is complex, 
consider extracting it into a separate function.

Chapter 5  Handling Events and Conditional Rendering



99

�Creating Reusable Functions for 
Component Behavior
Encapsulating logic within reusable functions is a key practice for 

maintaining clean and modular React components. By isolating specific 

behaviors into functions, you can not only simplify your components 

but also enhance their reusability and testability. Functions that handle 

repetitive or common logic can significantly reduce code duplication and 

make your application easier to manage.

Consider the example in Listing 5-8, where a toggle button switches 

between “ON” and “OFF” states. The logic for toggling the state is 

encapsulated within a function, ensuring that the component remains 

organized and focused on its purpose.

Listing 5-8.  Toggle Button with Function

// ToggleButton.jsx
import React, { useState } from 'react';

const ToggleButton = () => {
  const [isOn, setIsOn] = useState(false);

  const toggle = () => setIsOn(!isOn);

  �return <button onClick={toggle}>{isOn ? 'ON' : 'OFF'} 
</button>;

}

export default ToggleButton;

In this example, the toggle function is responsible for updating the 

state variable isOn. Each time the button is clicked, the toggle function 

toggles the state between true and false. By separating this logic from the 

JSX, the component remains clean and focused on rendering, while the 

function handles the behavior.

Chapter 5  Handling Events and Conditional Rendering



100

This approach not only improves code readability but also makes the 

logic reusable. For instance, the same toggle function could be adapted 

for other components that require similar functionality, such as toggling 

visibility, enabling/disabling features, or switching themes.

Tip  Use keys in lists to help React identify which items have 
changed, been added, or removed. This is especially important when 
rendering lists conditionally, as it optimizes re-rendering.

�Example: Building an Interactive 
Login Form
To consolidate the event handling and conditional rendering concepts 

discussed in this chapter, let’s create an interactive login form. This 

form will handle user input, validate login credentials, and display a 

personalized welcome message upon successful login. By incorporating 

React’s state management, event handling, and conditional rendering, we 

can demonstrate how to build dynamic and responsive user interfaces.

The complete application is designed to provide a functional and 

interactive login form. Listing 5-9 illustrates the code for the LoginForm.
jsx file, which serves as the entry point of the application.

Listing 5-9.  Interactive Login Form

// LoginForm.jsx
import React, { useState } from 'react';
import './LoginForm.css';

const LoginForm = () => {
  const [username, setUsername] = useState('');

Chapter 5  Handling Events and Conditional Rendering



101

  const [password, setPassword] = useState('');
  const [isLoggedIn, setIsLoggedIn] = useState(false);
  const [errorMessage, setErrorMessage] = useState('');

  const handleSubmit = (event) => {
    event.preventDefault();
    if (username === 'user' && password === 'password') {
      setIsLoggedIn(true);
      setErrorMessage('');
    } else {
      �setErrorMessage('Invalid credentials. Please try 

again.');
    }
  };

  const handleLogout = () => {
    setIsLoggedIn(false);
    setUsername('');
    setPassword('');
  };

  return (
    <div className="login-form-container">
      {isLoggedIn ? (
        <div className="welcome-message">
          <h1>Welcome, {username}!</h1>
          �<button onClick={handleLogout} 

className="logout-button">
            Logout
          </button>
        </div>
      ) : (
        <form onSubmit={handleSubmit} className="login-form">

Chapter 5  Handling Events and Conditional Rendering



102

          <h2>Login</h2>
          �{errorMessage && <p className="error-message"> 

{errorMessage}</p>}
          <label>
            Username:
            <input
              type="text"
              value={username}
              onChange={(e) => setUsername(e.target.value)}
              className="input-field"
            />
          </label>
          <label>
            Password:
            <input
              type="password"
              value={password}
              onChange={(e) => setPassword(e.target.value)}
              className="input-field"
            />
          </label>
          <button type="submit" className="login-button">
            Login
          </button>
        </form>
      )}
    </div>
  );
}

export default LoginForm;

Chapter 5  Handling Events and Conditional Rendering



103

The login form is rendered when the user is not logged in, as shown 

in Figure 5-1. The login form includes input fields for the username and 

password, along with a “Login” button. It also provides an error message 

if the submitted credentials are invalid. This screen is displayed when the 

isLoggedIn state is false, prompting the user to enter their credentials to 

proceed.

Figure 5-1.  Login form displaying input fields for username and 
password with a “Login” button

The welcome screen is dynamically rendered when the user 

successfully logs in as shown in Figure 5-2. The welcome screen consists of 

a personalized greeting (Welcome, {username}!) and a “Logout” button. 

This screen is displayed when the isLoggedIn state is true.

Chapter 5  Handling Events and Conditional Rendering



104

Figure 5-2.  Welcome screen displaying a personalized greeting and a 
“Logout” button after successful login

The interactive login form showcases essential React concepts, 

providing a seamless and user-friendly experience. The application 

leverages event handling to manage key interactions, such as form 

submission and logout actions. The handleSubmit method validates user 

input, preventing default browser behavior and ensuring the credentials 

are checked. Similarly, the handleLogout method handles the logout 

process, resetting the application state to its initial values.

The form and welcome message toggle dynamically using conditional 
rendering based on the isLoggedIn state. This ensures that the user only 

sees the appropriate interface, enhancing usability. State management 

is implemented using the useState hook, which tracks the username, 

password, isLoggedIn, and errorMessage states, enabling real-time 

updates to the UI.

The application also incorporates CSS styling to create a clean and 

modern interface, emphasizing the importance of aesthetics in enhancing 

user experience. Upon entering valid credentials (username as “user” and 

password as “password”), the application updates the isLoggedIn state and 

displays a personalized welcome message. If the credentials are invalid, an 

error message appears without reloading the page. The “Logout” button 

resets the state, redirecting the user back to the login form.

Chapter 5  Handling Events and Conditional Rendering



105

This implementation demonstrates React’s powerful features, 

including state management, conditional rendering, and event handling, 

while maintaining a professional design that prioritizes user interaction 

and experience.

�Summary
In this chapter, we delved into the critical concepts of handling user 

interactions and dynamically controlling the display of content in React 

applications. We began by exploring event handling, understanding how 

to manage user actions such as clicks and form submissions in both 

functional and class components. The chapter highlighted the differences 

in event handling syntax between functional components, which leverage 

hooks like useState, and class components, which require explicit binding 

of event handlers to ensure the correct context.

Next, we examined conditional rendering, an essential tool for creating 

responsive and interactive user interfaces. We covered various techniques, 

including the use of if statements for complex conditions, ternary operators 

for inline logic, and the logical && operator for concise conditional 

rendering. Each method was explained with practical examples to illustrate 

how to adapt the UI based on dynamic conditions effectively.

To solidify these concepts, we built a practical application: an 

interactive login form. This example showcased how to handle form 

submission events, validate user inputs, and use conditional rendering to 

display a personalized welcome message upon successful login. The login 

form also demonstrated clean UI design and state management, tying 

together the chapter’s key themes in a cohesive, real-world scenario.

This chapter equipped you with the skills to create dynamic and 

user responsive React applications by combining event handling, state 

management, and conditional rendering. In the next chapter, we will 

Chapter 5  Handling Events and Conditional Rendering



106

take these skills further by focusing on rendering lists efficiently. You’ll 

learn how to dynamically generate lists of items, the role of unique keys 

in tracking component updates, and strategies to manage data-driven UIs 

effectively. With these tools, you’ll be ready to build React applications that 

handle collections of data seamlessly.

Chapter 5  Handling Events and Conditional Rendering



107© Nitesh Upadhyaya 2025 
N. Upadhyaya, Advanced Front-End Development,  
https://doi.org/10.1007/979-8-8688-1318-4_6

CHAPTER 6

Lists and Keys

�Introduction to Lists in React
Lists are a foundational aspect of React applications, allowing developers 

to dynamically render collections of data, such as products, users, or 

messages. React efficiently handles lists by transforming arrays into 

components, enabling interactive and dynamic user interfaces. Keys, 

an essential feature in React, play a critical role in helping React identify 

changes in lists, optimize rendering, and improve overall performance.

Whether you are building an ecommerce product grid, a to-do list, or 

a social media feed, understanding how to render lists, manage dynamic 

data, and use keys correctly is critical. This chapter introduces these 

concepts with practical examples and explores advanced techniques like 

lazy rendering and virtualization for handling large datasets.

Note  Lists in React are often combined with state management 
techniques to handle dynamic data updates, making them integral to 
most interactive applications.

https://doi.org/10.1007/979-8-8688-1318-4_6#DOI


108

�Rendering Lists in React
In React, rendering lists is done using the map() function, which iterates 

over an array and transforms it into a set of React components. For 

example, a list of numbers can be easily displayed as shown in Listing 6-1.

Listing 6-1.  Rendering a List of Numbers

const NumberList = (props) => {
  const numbers = props.numbers;
  return (
    <ul>
      {numbers.map((number) => (
        <li key={number}>{number}</li>
      ))}
    </ul>
  );
}
const numbers = [1, 2, 3, 4, 5];
ReactDOM.render(<NumberList numbers={numbers} />, document.
getElementById('root'));

Here, the map() function creates a list of <li> elements for each 

number. Notice the use of the key attribute, which helps React identify and 

optimize updates to each list item.

�Rendering Objects with Lists
Lists often consist of objects rather than primitive data types. You can use 

the map() function to render specific object properties as illustrated in 

Listing 6-2.

Chapter 6  Lists and Keys



109

Listing 6-2.  Rendering a List of Users

const users = [
  { id: 1, name: 'Alice' },
  { id: 2, name: 'Bob' },
  { id: 3, name: 'Charlie' },
];

const UserList = () => {
  return (
    <ul>
      {users.map((user) => (
        <li key={user.id}>{user.name}</li>
      ))}
    </ul>
  );
}
ReactDOM.render(<UserList />, document.getElementById('root'));

Tip A lways include a key when rendering lists to ensure React can 
efficiently track changes to list items.

Here, each user object is rendered as a list item. The id property 

is used as a unique key for each list element, ensuring that React can 

optimize updates efficiently.

�Understanding Keys in React
Keys play a critical role in optimizing React’s rendering performance 

and ensuring predictable behavior when working with dynamic lists. 

React uses keys to identify which elements have changed, been added, 

Chapter 6  Lists and Keys



110

or removed during updates, making the reconciliation process efficient. 

Without keys, React may unnecessarily re-render the entire list, impacting 

performance. Keys help React minimize DOM updates by reusing existing 

elements wherever possible and ensuring that updates are applied to the 

correct list items, especially when the order of elements changes.

To follow best practices, always use unique and stable identifiers 

such as a database id or a universally unique identifier (UUID) for keys. 

Avoid using array indices as keys because they can cause unexpected 

behaviors, particularly when the list is dynamic — such as when items 

are added, removed, or reordered. For example, when a list relies on 

array indices, React may lose track of changes and misalign updates, 

leading to rendering inconsistencies. Proper use of keys ensures smoother 

performance and a more predictable UI. Listing 6-3 shows how you can 

avoid common mistakes with keys.

Listing 6-3.  Avoiding Common Mistakes with Keys

const items = ['Apple', 'Banana', 'Cherry'];
const ItemList = () => {
  return (
    <ul>
      {items.map((item, index) => (
        // Avoid using index as key
        <li key={index}>{item}</li>
      ))}
    </ul>
  );
}

If the order of items changes or elements are added/removed, using 

indices can cause unexpected behavior. Always use stable and unique 

identifiers.

Chapter 6  Lists and Keys



111

�Dynamic Lists: Adding, Removing, 
and Updating Items
Dynamic lists are an integral part of modern web applications where data 

frequently changes, such as to-do lists, product catalogs, or chat messages. 

Handling updates, additions, and deletions in these lists requires careful 

state management to ensure the UI reflects the changes efficiently. React 

provides the useState hook to manage dynamic list states, enabling 

developers to add, remove, or update items seamlessly while keeping the 

UI in sync with the underlying data.

When adding an item to a list, it’s essential to use immutable updates. 

Instead of modifying the existing array, create a new array using spread 

syntax (...) or methods like concat() to ensure React recognizes the 

change and re-renders the list appropriately. For example, adding a new 

task to a to-do list involves appending the new task to the existing array 

without altering it directly.

Similarly, removing an item requires filtering the list based on a 

condition, such as an index or unique identifier. The filter() method 

allows you to create a new array that excludes the specific item, ensuring 

the list remains immutable. When updating items, use the map() method 

to iterate over the list, update the matching item, and return a new array 

with the modified data.

For larger and more complex applications, state management libraries 

like Redux or Zustand can provide a more scalable approach for handling 

dynamic lists. These tools centralize state management and allow 

components to subscribe to updates, reducing unnecessary re-renders and 

improving performance.

An example of a dynamic list might involve adding and removing 

tasks in a to-do application. Each operation—whether adding a new task, 

removing an existing one, or updating its status—relies on state updates. 

Proper use of React’s tools ensures that dynamic lists remain performant, 

Chapter 6  Lists and Keys



112

consistent, and easy to maintain as applications scale. The example in 

Listing 6-4 illustrates how you can add and remove items from an array 

of items.

Listing 6-4.  Adding and Removing List Items

import React, { useState } from 'react';

const TodoApp = () => {
  �const [todos, setTodos] = useState(['Learn React', 'Write 
Code']);

  const addTodo = () => {
    const newTodo = `Task ${todos.length + 1}`;
    setTodos([...todos, newTodo]);
   // Add a new task
  };

  const removeTodo = (index) => {
    setTodos(todos.filter((_, i) => i !== index));
   // Remove a task
  };

  return (
    <div>
      <h2>To-Do List</h2>
      <ul>
        {todos.map((todo, index) => (
          <li key={index}>
            {todo}
            �<button onClick={() => removeTodo(index)}> 

Remove</button>
          </li>
        ))}

Chapter 6  Lists and Keys



113

      </ul>
      <button onClick={addTodo}>Add Task</button>
    </div>
  );
}

export default TodoApp;

Here, the addTodo function adds a new task to the list, while the 

removeTodo function deletes a task based on its index.

�Nested Lists and Complex Data Structures
Rendering nested lists and complex data structures is a common 

requirement in applications that display hierarchical data, such as product 

categories, menus, or organizational charts. Nested data structures often 

include items with parent-child relationships, where each parent contains 

one or more children. In React, this can be achieved using recursive 

rendering or nested map() calls.

When the data is nested, each level of the hierarchy must be iterated 

over, and components must be created for both parent and child elements. 

For example, consider a list of categories where each category contains a 

sublist of items. You can use a recursive approach, where a function calls 

itself for each nested level, rendering child elements dynamically. Suppose 

we have a nested data structure of categories, where each category 

contains subcategories as shown in Listing 6-5, and Figure 6-1 shows the 

output in the browser.

Chapter 6  Lists and Keys



114

Listing 6-5.  Rendering a Nested List

import './NestedCategoryList.css';

const categories = [
  {
    name: 'Fruits',
    items: ['Apple', 'Banana', 'Cherry'],
  },
  {
    name: 'Vegetables',
    items: ['Carrot', 'Broccoli', 'Spinach'],
  },
];

const CategoryList = () => {
  return (
    <div className="category-list">
      {categories.map((category) => (
        <div key={category.name} className="category">
          <h3>{category.name}</h3>
          <ul>
            {category.items.map((item) => (
              <li key={item}>{item}</li>
            ))}
          </ul>
        </div>
      ))}
    </div>
  );
};

export default CategoryList;

Chapter 6  Lists and Keys



115

Figure 6-1.  Nested list and complex data structure

Here, we use a nested map() call: the outer map() iterates over the list 

of categories, and the inner map() generates <li> elements for each item 

inside the category. Each item and category have a unique key to ensure 

React optimizes the rendering process.

Chapter 6  Lists and Keys



116

�Recursive Rendering for Deeply 
Nested Structures
Recursion is a programming technique where a function calls itself to 

handle repetitive tasks, particularly useful for traversing hierarchical or 

nested structures. In the context of rendering deeply nested categories, 

recursion allows us to dynamically process any level of nesting without 

writing separate code for each level. For instance, in Listing 6-6, the 

function renders a category and checks for child categories. If child 

categories exist, the function calls itself to render them, ensuring that 

every nested level is processed in a consistent manner. This approach is 

preferred because it simplifies the code and makes it adaptable to varying 

levels of depth. While recursion can seem complex initially, especially 

for beginners, it is a powerful and efficient way to manage and render 

hierarchical data structures. Figure 6-2 shows the output in the browser.

Listing 6-6.  Rendering a Recursive Deeply Nested List

const nestedCategories = [
  {
    name: 'Electronics',
    subcategories: [
      { name: 'Phones', subcategories: [] },
      �{ name: 'Laptops', subcategories: [{ name: 'Gaming 

Laptops', subcategories: [] }] },
    ],
  },
  {
    name: 'Clothing',
    subcategories: [
      { name: 'Men', subcategories: [] },

Chapter 6  Lists and Keys



117

      { name: 'Women', subcategories: [] },
    ],
  },
];

const RecursiveCategory = ({ categories }) => {
  return (
    <ul>
      {categories.map((category) => (
        <li key={category.name}>
          {category.name}
          �{category.subcategories && category.subcategories.

length > 0 && (
            �<RecursiveCategory categories={category.

subcategories} />
          )}
        </li>
      ))}
    </ul>
  );
}
const App = () => {
  return (
    <div>
      <h2>Categories</h2>
      <RecursiveCategory categories={nestedCategories} />
    </div>
  );
}

Chapter 6  Lists and Keys



118

Figure 6-2.  Rendering deeply nested categories

In this example, the RecursiveCategory component calls itself 

for each nested level of the data. If a category has child categories 

(subcategories), the function recursively renders them as a nested <ul> 

element. This pattern allows you to handle deeply nested or infinite data 

structures effectively.

Caution E nsure that each nested list has its own unique keys to 
avoid rendering conflicts.

Chapter 6  Lists and Keys



119

�Best Practices for Managing Lists and Keys

	 1.	 Unique Keys: Always provide unique keys for parent 

and child elements. This ensures React can track 

changes efficiently during re-rendering.

	 2.	 Data Consistency: Ensure the data structure for 

parent and child elements is consistent to avoid 

unexpected errors.

	 3.	 Avoid Hardcoding: Use dynamic iteration (like 

map()) to avoid hardcoding elements, making your 

code flexible and maintainable.

	 4.	 Separation of Logic: Keep recursive rendering 

logic separate from the main component to ensure 

readability and reusability.

By leveraging React’s dynamic rendering capabilities, you can handle 

nested data structures with ease, ensuring your components are clean, 

maintainable, and scalable, even for deeply hierarchical data.

�Advanced Techniques: Lazy Rendering 
and Virtualized Lists
Handling large lists efficiently is crucial for improving the performance 

and user experience of React applications. When a list contains thousands 

of items, rendering all elements at once can cause significant delays, slow 

down page load times, and overwhelm the browser. React offers advanced 

techniques, such as lazy loading and virtualization, to address these 

challenges by optimizing how and when list items are rendered.

Chapter 6  Lists and Keys



120

�Lazy Loading in React
Lazy loading defers the loading of components or parts of the application 

until they are needed. Instead of rendering everything up front, React 

allows you to split your code into smaller chunks and load components 

dynamically when required. This reduces the initial bundle size and 

improves the page load time. React achieves this using the React.lazy 

method and Suspense. Listing 6-7 demonstrates lazy loading in React.

Listing 6-7.  Lazy Loading

import React, { Suspense, lazy } from 'react';

// Lazy loaded component
const ProductList = lazy(() => import('./ProductList'));

const App = () => {
  return (
    <div>
      <h1>Welcome to the Store</h1>
      <Suspense fallback={<div>Loading Products...</div>}>
        <ProductList />
      </Suspense>
    </div>
  );
}

export default App;

React’s React.lazy allows for dynamic importing of the ProductList 

component, ensuring that it is only fetched when needed. This behavior 

is complemented by Suspense, which provides a fallback UI—such as 

a loading spinner—while the lazy-loaded component is being fetched. 

Together, these features optimize the application’s performance by loading 

Chapter 6  Lists and Keys



121

resources for ProductList only when the user navigates to that section, 

reducing initial load times and improving efficiency.

�Virtualization of Large Lists
When working with massive datasets, rendering all list items at once 

is inefficient, as most items are not visible to the user. Virtualization 

techniques help by rendering only the portion of the list that is currently 

visible within the viewport. Libraries like react-window and react- 
virtualized are commonly used for this purpose. In virtualization, 

items outside the visible area are not rendered to the DOM. This reduces 

memory consumption and speeds up rendering, resulting in smoother 

scrolling and improved responsiveness. Listing 6-8 shows a virtualized list 

with react-window.

Listing 6-8.  Virtualized List with react-window

import React from 'react';
import { FixedSizeList } from 'react-window';

const items = Array.from({ length: 10000 }, (_, index) =>  
`Item ${index + 1}`);

const VirtualizedList = () => {
  return (
    <FixedSizeList
      height={400}   // Height of the container
      width={300}    // Width of the container
      itemSize={35}  // Height of each row
      itemCount={items.length}  // Total number of items
    >
      {({ index, style }) => (
        <div style={style}>{items[index]}</div>

Chapter 6  Lists and Keys



122

      )}
    </FixedSizeList>
  );
}

export default VirtualizedList;

The FixedSizeList component from react-window allows developers 

to efficiently render large lists by specifying parameters like height, 

width, and itemSize to define the viewport and the size of each item. 

Only the rows currently visible within the viewport are rendered to the 

DOM, significantly reducing the number of DOM nodes and improving 

performance. As the list scrolls, items are dynamically rendered, providing 

a seamless user experience. For instance, if a list contains 10,000 items 

but only 10 are visible at any time, React will only render those 10 

rows, conserving memory and processing power for other parts of the 

application.

�When to Use Lazy Loading and Virtualization

	 1.	 Use lazy loading when components are large or 

non-essential, such as modal dialogs, separate 

pages, or components rendered on demand.

	 2.	 Use virtualization for rendering long lists, such as 

product catalogs, user tables, or message threads, 

where rendering all items simultaneously would 

cause lag.

By combining these techniques, developers can create highly 

optimized and scalable React applications capable of handling vast 

amounts of data while maintaining a smooth user experience.

Chapter 6  Lists and Keys



123

�Example: Product List 
with Add-to-Cart Functionality
This example in Listing 6-9 demonstrates a product list with dynamic 

additions and cart functionality.

Listing 6-9.  Product List with Add-to-Cart Functionality

import React, { useState } from 'react';
import './ProductListAddToCart.css';

const ProductList = () => {
  const [products] = useState([
    { id: 1, name: 'Milk', price: 5 },
    { id: 2, name: 'Egg', price: 8 },
  ]);
  const [cart, setCart] = useState([]);

  const addToCart = (product) => {
    setCart([...cart, product]);
  };

  return (
    <div className="container">
      <div className="products-section">
        <h2>Products</h2>
        <div className="products-grid">
          {products.map((product) => (
            <div key={product.id} className="product-card">
              <h4>{product.name}</h4>
              <p>${product.price}</p>
              �<button onClick={() => addToCart(product)}> 

Add</button>

Chapter 6  Lists and Keys



124

            </div>
          ))}
        </div>
      </div>

      <div className="cart-section">
        <h2>Your Cart</h2>
        {cart.length === 0 ? (
          <p className="empty-cart">Your cart is empty.</p>
        ) : (
          <ul>
            {cart.map((item, index) => (
              <li key={index}>
                <span>{item.name}</span>
                <span>${item.price}</span>
              </li>
            ))}
          </ul>
        )}
      </div>
    </div>
  );
}

export default ProductList;

When you run the example in Listing 6-9, the page displays two main 

sections: Products and Cart. In the Products section, a list of available 

items (e.g., Laptop, Phone) is displayed, showing their name, price, and 

an “Add to Cart” button for each. When you click the “Add to Cart” button, 

the corresponding product is dynamically added to the Cart section on the 

right. The cart updates instantly without a page refresh, showcasing React’s 

efficient state management.

Chapter 6  Lists and Keys



125

The Cart section lists all selected products, showing their names and 

prices. If no items are added, the cart displays an empty state message like 

“Your cart is empty,” ensuring the UI remains clean and user-friendly. Each 

addition uses React’s state management (useState hook) to update the 

cart in real time. The example also emphasizes the importance of keys for 

list items to optimize rendering performance. By separating the cart and 

products visually, the design ensures clarity, allowing users to easily add 

products and view their cart contents.

This example demonstrates React’s core concepts, including dynamic 

list rendering, state updates, and a responsive user interface, providing a 

foundation for building interactive ecommerce applications. Figure 6-3 

shows the output in the browser.

Figure 6-3.  Output of the product list with Add-to-Cart functionality

Chapter 6  Lists and Keys



126

�Summary
In this chapter, we explored the core concepts of rendering lists and 

the importance of keys in React applications for efficient updates. We 

began with the fundamentals of dynamically generating lists using the 

map() function and emphasized the critical role of unique keys in React’s 

reconciliation process. Through practical examples, you learned how 

to render lists of both primitive values and objects while following best 

practices, such as avoiding array indices as keys to prevent unexpected 

behavior.

We also discussed managing dynamic lists, where items can be added, 

removed, or updated using React’s useState hook, ensuring seamless state 

updates. The chapter introduced techniques for working with nested and 
complex data structures, including recursive rendering for deeply nested 

lists, allowing you to handle hierarchical data effectively.

On the performance front, we covered advanced techniques such 

as lazy loading and virtualization. You learned how lazy loading defers 

rendering components until needed, improving page load times, and how 

libraries like react-window optimize list rendering for large datasets by 

dynamically rendering only visible items.

By implementing these concepts, you are now equipped to build 

interactive, efficient, and scalable list-based components in React, even 

for complex applications with vast amounts of data. In the next chapter, 

we will explore how to break down your user interface into reusable, 

modular components, a fundamental principle for building scalable and 

maintainable React applications.

Chapter 6  Lists and Keys



127© Nitesh Upadhyaya 2025 
N. Upadhyaya, Advanced Front-End Development,  
https://doi.org/10.1007/979-8-8688-1318-4_7

CHAPTER 7

Thinking 
in Components
React’s power lies in its ability to break down complex user interfaces 

into small, reusable, and modular components. This component-driven 

architecture helps developers create scalable, maintainable, and flexible 

applications. In this chapter, we’ll learn how to design UIs by “thinking in 

components,” explore best practices for creating modular structures, and 

implement a practical example that ties these ideas together.

�Understanding Components
At its core, a component is an independent unit of UI. Each component 

encapsulates its structure (HTML), behavior (logic), and style (CSS), 

making it easier to reuse and manage. Whether you are designing a 

simple button or an entire dashboard, components allow you to divide 

the interface into smaller pieces that work together seamlessly. Take the 

Button example as shown in Listing 7-1.

Listing 7-1.  Button Component

function Button(props) {
  return <button>{props.label}</button>;
}

https://doi.org/10.1007/979-8-8688-1318-4_7#DOI


128

This simple Button component accepts a label prop, allowing you to 

reuse it with different text as illustrated in Listing 7-2.

Listing 7-2.  Reusable Button Component

<Button label="Submit" />
<Button label="Cancel" />

Instead of writing repetitive HTML, you build once and reuse 

everywhere.

Note  Components can be either functional or class based. 
Functional components are more commonly used in modern React 
applications due to their simplicity and compatibility with hooks.

�Why Adopt a Component-Based Approach?
Thinking in components isn’t just a React convention; it’s a design 

philosophy. By adopting this approach, you gain several advantages:

	 1.	 Reusability: Components are reusable across 

the application, reducing redundancy and effort. 

For instance, a Card component can be reused to 

display products, user profiles, or articles.

	 2.	 Maintainability: Smaller components are easier to 

debug, test, and enhance without affecting the rest 

of the application.

	 3.	 Scalability: As applications grow, component-

driven design ensures that the codebase remains 

organized and modular.

Chapter 7  Thinking in Components



129

	 4.	 Separation of Concerns: Logic, styling, and markup 

are encapsulated, making components self-

contained and easier to reason about.

Tip T reat components like building blocks. Smaller blocks can 
combine to form complex UIs, just like Lego pieces.

�Steps to Think in Components
Breaking down the UI into components requires a systematic approach. 

Here’s a structured way to design applications in React.

Start by examining the UI design (or wireframe) and identifying 

distinct sections. Each section that serves a specific purpose is a 

candidate for a component. For example, in a shopping cart page, the UI 

might include

•	 A Header for the app name

•	 A Product List displaying items in the cart

•	 A Cart Summary showing the total price and 

checkout button

Next, divide the page into small, manageable components. Using the 

shopping cart as an example, you can create a hierarchy:

 

Chapter 7  Thinking in Components



130

At this stage

•	 Header is a stand-alone component displaying navigation.

•	 ProductList holds a list of ProductItem components.

•	 CartSummary handles price calculation and checkout 

actions.

Once components are identified, determine how they interact. Parent 

components (like ProductList) manage the data and pass it down to children 

(ProductItem) through props. Listings 7-3 to 7-5 illustrate ProductItem, 

ProductList, and shoppingCartPage components, respectively.

Listing 7-3.  ProductItem Component

const ProductItem = ({ name, price }) => {
  return (
    <div>
      <h4>{name}</h4>
      <p>Price: ${price}</p>
    </div>
  );
}

Listing 7-4.  ProductList Component

const ProductList = ({ products }) => {
  return (
    <div>
      {products.map((product) => (
        �<ProductItem key={product.id} name={product.name} 

price={product.price} />
      ))}

Chapter 7  Thinking in Components



131

    </div>
  );
}

Listing 7-5.  ShoppingCartPage Component

function ShoppingCartPage() {
  const products = [
    { id: 1, name: 'Laptop', price: 1000 },
    { id: 2, name: 'Phone', price: 500 },
  ];

  return <ProductList products={products} />;
}

Here:

•	 ProductList is responsible for rendering a list.

•	 ProductItem is a reusable child that displays individual 

product details.

•	 Data flows from the parent (ShoppingCartPage) to 

children via props.

Start by building smaller components, like ProductItem, and gradually 

compose them into larger ones. A common React strategy is bottom-up  
development, where individual components are implemented and 

integrated into parent components.

�Types of Components
React components can be classified into two main types.

Chapter 7  Thinking in Components



132

�Functional Components
Functional components are JavaScript functions that take props as input 

and return JSX (JavaScript XML) to render UI elements. Introduced as 

part of React’s modern development approach, functional components 

are simpler, more concise, and easier to understand compared to class 

components. They are now the preferred way to build components in 

React. Listing 7-6 illustrates an example of a functional component.

Listing 7-6.  Functional Component

function Greeting(props) {
  return <h1>Hello, {props.name}!</h1>;
}

�Class Components
Class components are ES6 classes that extend React.Component. They 

are used to create more complex components that manage their own 
state and include lifecycle methods. While functional components are 

now preferred in modern React development, class components are 

still essential to understand, especially when working with older React 

codebases. Listing 7-7 illustrates an example of a class component.

Listing 7-7.  Class Component

class Greeting extends React.Component {
  render() {
    return <h1>Hello, {this.props.name}!</h1>;
  }
}

Chapter 7  Thinking in Components



133

Caution  Functional components are recommended for new 
projects. Class components are still valid but are less preferred in 
modern React due to hooks.

�Reusability and Composition
Components in React are the building blocks of a user interface. 

To maximize efficiency, components should be both reusable and 

composable. Reusability ensures that a single component can be used 

multiple times with different data or contexts, reducing redundancy 

and improving maintainability. To achieve this, components should use 

props to accept dynamic data and avoid hardcoding values within the 

component itself. For instance, a Product component that accepts name 

and price as props can display different products without requiring 

separate implementations. By keeping components generic and stateless, 

developers can further enhance their flexibility. Stateless components 

focus on presenting data and avoid managing state, leaving that 

responsibility to parent components, which pass down data via props. 

Listing 7-8 illustrates an example of reusability of a product component.

Listing 7-8.  Component Reusability in React

function Product({ name, price }) {
  return (
    <div>
      <h3>{name}</h3>
      <p>Price: ${price}</p>
    </div>
  );
}

Chapter 7  Thinking in Components



134

Composition involves combining smaller components to build 

complex user interfaces. Instead of creating large, monolithic components, 

React encourages breaking the UI into smaller, modular components and 

nesting them together. For example, an application can be composed of 

a Header, ProductList, and CartSummary, where the ProductList itself 

reuses a ProductItem component to display individual products. This 

modular structure makes the code clean, readable, and easy to maintain 

while also promoting a clear separation of concerns. Parent components 

handle state and behavior, while child components focus on presentation. 

Listing 7-9 illustrates an example of composition in React.

Listing 7-9.  Component Composition in React

function App() {
  return (
    <div>
      <Header />
      <ProductList />
      <CartSummary />
    </div>
  );
}

Tip A im to create stateless components whenever possible. 
Let parent components handle state and pass it down to child 
components via props.

Chapter 7  Thinking in Components



135

�Best Practices for Component Design
When designing React components, it is essential to follow best practices 

to ensure the code remains modular, maintainable, and easy to test. The 

Single Responsibility Principle states that each component should have 

one clear purpose, focusing on a specific part of the UI or logic. Avoid 

overloading components with too many responsibilities; instead, break 

down large components into smaller, reusable subcomponents that are 

easier to manage and debug.

Using meaningful names is equally important. Descriptive names like 

ProductCard or UserProfile make it clear what the component does, 

unlike generic names such as Card or Box, which can cause confusion as 

the application grows. Additionally, components should implement prop 

validation using tools like PropTypes or TypeScript to ensure the correct 

data types are passed as props. This reduces runtime errors and improves 

code reliability.

Keeping components small is a good rule of thumb. If a component 

exceeds 200 lines of code, consider splitting it into smaller, more focused 

components. This promotes reusability and ensures the code remains 

clean and readable.

Caution A void creating “God components” that handle too 
much functionality or render an entire page on their own. These 
components are difficult to test, maintain, and extend, defeating 
the purpose of React’s component-based architecture. By adhering 
to these best practices, you can design React components that are 
modular, scalable, and easier to work with across the application 
lifecycle.

Chapter 7  Thinking in Components



136

�Example: Designing a Shopping Cart Page
Let’s design the shopping cart page by breaking it into reusable 
components as shown in Listing 7-10. The application is structured into 

modular components such as Header, ProductList, and CartSummary, 

each serving a specific purpose to enhance maintainability and scalability.

The Header displays the title of the page, ProductList dynamically 

renders a list of products with their details, and CartSummary summarizes 

the total price with a “Checkout” button. By composing these components 

together, the UI remains clean, organized, and easy to understand.

Figure 7-1 shows the output of the shopping cart page, demonstrating 

how the components work together seamlessly to display the products 

and the cart summary in a well-structured layout. This design reflects 

the principles of reusability and composition, ensuring a modular and 

scalable solution.

�Header Component

Listing 7-10.  Shopping Cart Application

import React from "react";
const Header = () => {
  return (
    <header className="shopping-header">
      <h1>Shopping Cart</h1>
    </header>
  );
};
export default Header;

Chapter 7  Thinking in Components



137

�Product Component
import React from "react";
const Product = ({ name, price }) => {
  return (
    <div>
      <h4>{name}</h4>
      <p>Price: ${price}</p>
    </div>
  );
}
export deafult Product;

�ProductList Component
import React from "react";

const ProductList = ({ products }) => {
  return (
    <div className="product-list-container">
      <h2>Products</h2>
      <ul className="product-list">
        {products.map((product) => (
          <li key={product.id} className="product-item">
            <div>
              <p className="product-name">{product.name}</p>
              �<p className="product-price">Price: ${product.

price}</p>
            </div>
          </li>
        ))}

Chapter 7  Thinking in Components



138

      </ul>
    </div>
  );
};

export default ProductList;

�CartSummary Component
import React from "react";
const CartSummary = ({ total }) => {
  return (
    <div className="cart-summary">
      <h2>Cart Summary</h2>
      �<p className="cart-total">Total Price: ${total.

toFixed(2)}</p>
    </div>
  );
};

export default CartSummary;

�Composing the Page
import React from "react";
import Header from "./Header";
import ProductList from "./ProductList";
import CartSummary from "./CartSummary";
import "./ShoppingCart.css"; �// Import global styles for this 

component

Chapter 7  Thinking in Components



139

const ShoppingCart = () => {
  const products = [
    { id: 1, name: "Laptop", price: 1000 },
    { id: 2, name: "Phone", price: 500 },
  ];

  �const total = products.reduce((sum, product) => sum + 
product.price, 0);

  return (
    <div className="shopping-cart">
      <Header />
      <ProductList products={products} />
      <CartSummary total={total} />
    </div>
  );
};

export default ShoppingCart;

Chapter 7  Thinking in Components



140

Figure 7-1.  Output of the shopping cart page

�Common Challenges When Thinking 
in Components
When designing components in React, developers often encounter several 

challenges. One common issue is over-componentization, where the 

UI is broken down into too many small components. While modularity is 

essential, an excessive number of components can make the code difficult 

to follow, understand, and maintain.

Chapter 7  Thinking in Components



141

Another challenge is state management. Deciding where the state 

should reside can be tricky, especially in complex applications. The best 

practice is to lift the state up to the nearest common ancestor component 

that needs to manage or share it. This ensures that child components 

remain stateless and focus solely on presenting the data.

Lastly, balancing reusability and specificity can be difficult. 

While reusability is important, making components overly generic can 

complicate their implementation and reduce clarity. Components should 

be flexible enough to handle variations but not so abstract that they 

become hard to use or understand. Striking the right balance ensures 

clean, maintainable, and reusable components without unnecessary 

complexity.

�Summary
In this chapter, we explored the concept of designing applications 

by thinking in components, a core principle in React development. 

Components are reusable pieces of code that encapsulate UI elements, 

making applications easier to manage and scale. By breaking the UI 

into smaller, manageable parts, components improve reusability, 

maintainability, and scalability of the codebase.

We discussed the essential steps to thinking in components, which 

include analyzing the UI, breaking it down into smaller parts, identifying 

reusable elements, and defining a clear component hierarchy. The 

concepts of reusability and composition were highlighted, emphasizing 

the importance of using props to pass data, keeping components small and 

focused, and designing them to be composable.

Chapter 7  Thinking in Components



142

To ensure clean and efficient designs, we explored best practices, 

such as following the single responsibility principle and validating props 

to maintain code clarity and predictability. Finally, we implemented 

a practical example by building a shopping cart page. This example 

demonstrated how to create modular, reusable components like Header, 

ProductList, and CartSummary to construct a complete UI efficiently.

In the next chapter, we will dive into enhancing the visual appearance 

of components through modern styling techniques and best practices.

Chapter 7  Thinking in Components



143© Nitesh Upadhyaya 2025 
N. Upadhyaya, Advanced Front-End Development,  
https://doi.org/10.1007/979-8-8688-1318-4_8

CHAPTER 8

Styling Your 
Application
Styling is a critical aspect of web development, as it determines how 

your application looks and feels. React provides flexibility in styling, 

allowing you to choose between traditional CSS, CSS-in-JS libraries, and 

frameworks like Tailwind or Bootstrap. In this chapter, we will explore 

various techniques for styling React applications, their pros and cons, and 

best practices for building a clean, maintainable, and responsive UI.

�Importance of Styling in React Applications
Styling in React is more than just making an application look good—it 

plays a pivotal role in shaping the overall user experience (UX) and 

ensuring accessibility for all users. In modern web development, aesthetics 

and functionality go hand in hand. A well-designed, visually appealing 

application can engage users effectively, encourage interaction, and 

ensure your product stands out from the competition. At the same time, 

intuitive design and proper styling make navigation seamless, reduce 

cognitive load, and enable users to complete tasks efficiently.

An essential characteristic of a well-styled React application is its 

intuitiveness. Intuitive styling ensures that users can interact with 

your application effortlessly, where design choices align naturally with 

https://doi.org/10.1007/979-8-8688-1318-4_8#DOI


144

user expectations. For instance, buttons are visibly clickable, links are 

highlighted appropriately, and form inputs have clear focus indicators. 

Users should never be left guessing where to click or how to navigate the 

application.

Additionally, well-executed styling enhances the visual appeal of the 

application, keeping users engaged. Carefully chosen color palettes, font 

styles, and spacing create a harmonious look and feel, making your app 

not only functional but also pleasant to use. When aesthetics aligns with 

branding and content, it evokes a stronger emotional connection with 

users, boosting retention and satisfaction.

Another critical factor is responsiveness. In today’s digital landscape, 

where users access applications from a wide range of devices—from 

desktops and tablets to smartphones—styling must adapt seamlessly to 

varying screen sizes and resolutions. Responsive design techniques, such 

as flexible grids, CSS media queries, and relative units (like percentages 

and rem), ensure that your app maintains usability and visual consistency 

across all devices. React applications often leverage libraries like styled- 
components, CSS-in-JS, or frameworks like Bootstrap and Tailwind CSS 

to achieve responsiveness effortlessly.

It’s important to note that styling also directly influences accessibility. 

A well-styled application considers users with visual impairments or 

other disabilities, ensuring they can interact with the content effectively. 

Prioritizing contrast ratios for text and background colors is vital to 

meet Web Content Accessibility Guidelines (WCAG) standards, making 

content readable for all users, including those with low vision. Using 

semantic HTML elements, appropriate ARIA roles, and visible focus 

states for keyboard navigation further enhances accessibility, enabling an 

inclusive experience.

Ultimately, styling in React applications should strike a balance 

between form and function. While aesthetics creates visual appeal, the 

purpose of styling is to ensure clarity, usability, and accessibility for every 

Chapter 8  Styling Your Application



145

user interacting with the app. By combining responsive techniques, 

accessibility best practices, and modern styling tools, developers can 

create engaging, user-friendly, and inclusive interfaces that elevate the 

overall quality of their applications.

�Adding Styles Using Traditional CSS
One of the simplest and most widely understood methods for styling 

React applications is traditional CSS, which involves linking external 

stylesheets to components. By leveraging this approach, developers can 

apply familiar CSS techniques without introducing additional complexity 

or dependencies. Traditional CSS is ideal for developers transitioning from 

conventional web development to React because it aligns closely with how 

styles are managed in static HTML applications.

To implement traditional CSS, you first define styles in a .css file and 

then import that file into your React component. The styles are applied 

using class names, just as you would in standard HTML. Listing 8-1 

demonstrates this approach effectively.

Listing 8-1.  Using a CSS File

/* App.css */
.header {
  font-size: 2rem;
  color: blue;
}

Chapter 8  Styling Your Application



146

In your component, import the CSS file and apply the class name to 

the desired element:

// App.js
import './App.css';

const Header = () => {
  return <h1 className="header">Welcome to My App</h1>;
}

export default Header;

Here, the header class from the CSS file is applied to the <h1> tag, 

styling it with a font size of 2rem and a blue color. This method keeps the 

styling and logic neatly separated, providing clarity to developers and 

reducing code clutter within the component.

�Pros of Using Traditional CSS
Traditional CSS has several advantages, particularly for developers who 

are already proficient with standard CSS techniques. The first major 

benefit is its simplicity—no additional tools, libraries, or configurations 

are needed beyond linking the stylesheet. Developers can maintain a clear 

separation of concerns by keeping styles in a centralized file, making the 

codebase clean and easy to understand. This method is also ideal for small 

projects where managing styles does not require advanced techniques like 

CSS-in-JS or scoped styles.

�Cons of Using Traditional CSS
While traditional CSS offers simplicity, it does come with limitations, 

especially in large-scale applications. One significant challenge is the risk 

of class name collisions. When multiple components share the same class 

names, unintended style overrides can occur, leading to inconsistent UI 

Chapter 8  Styling Your Application



147

behavior. For example, using generic names like title or button across 

components can create conflicts, as the styles may unintentionally bleed 

into unrelated elements.

�Inline Styling in React
Inline styling in React provides a straightforward way to apply styles 

directly to an element using the style attribute. Unlike traditional CSS, 

inline styles in React are defined as JavaScript objects, where style 

properties are written in camelCase instead of the usual kebab-case. This 

makes it convenient to dynamically update styles based on logic or user 

interactions within a component. In Listing 8-2, a simple button is styled 

using inline styles.

Listing 8-2.  Inline Style in React

const Button = () => {
  return (
    <button
      style={{
        backgroundColor: 'blue',
        color: 'white',
        padding: '10px',
        borderRadius: '5px',
      }}
    >
      Click Me
    </button>
  );
}

Chapter 8  Styling Your Application



148

Here, the style attribute accepts a JavaScript object where properties 

like backgroundColor, padding, and borderRadius are defined in 

camelCase format. The resulting button appears with a blue background, 

white text, and rounded corners.

�Pros of Inline Styling
One of the biggest advantages of inline styling is that styles are scoped to 
the specific component. This eliminates the risk of class name collisions 

and makes the styling explicit and localized to the element. Inline styling 

is also particularly useful for dynamic styling, where styles need to change 

based on certain conditions or user interactions. For instance, you can 

easily toggle the button’s background color based on a state variable as 

shown in Listing 8-3.

Listing 8-3.  Dynamic Style in React

function DynamicButton() {
  const [isClicked, setIsClicked] = React.useState(false);

  return (
    <button
      style={{
        backgroundColor: isClicked ? 'green' : 'red',
        color: 'white',
        padding: '10px',
        borderRadius: '5px',
      }}
      onClick={() => setIsClicked(!isClicked)}
    >

Chapter 8  Styling Your Application



149

      {isClicked ? 'Clicked' : 'Click Me'}
    </button>
  );
}

Here, the background color dynamically changes to green when the 

button is clicked and returns to red otherwise. Inline styling makes it 

intuitive to manage such interactive styles without relying on external 

stylesheets.

�Cons of Inline Styling
Despite its simplicity and dynamic capabilities, inline styling has notable 

limitations. One of the main drawbacks is the lack of reusability. 

Since inline styles are defined directly within components, they cannot 

be shared across multiple elements or components, leading to code 

duplication and redundancy.

Additionally, inline styles can quickly become hard to maintain in 

larger applications. As the number of style properties increases, the inline 

style object can clutter your component, making the code less readable. 

This is particularly problematic when dealing with complex UIs that 

require extensive styling.

�CSS Modules
CSS Modules are a powerful approach to styling components in React, 

enabling scoped and modular styles without the risk of class name 

collisions. With CSS Modules, each .css or .module.css file generates 

unique class names that apply only to the component where they are 

imported, providing a clean and maintainable way to style applications.

Chapter 8  Styling Your Application



150

�How CSS Modules Work
A CSS Module file is defined with the .module.css extension. When 

the styles are imported into a React component, they are automatically 

transformed into unique class names by the build tool (e.g., Webpack). 

These class names ensure that styles remain scoped to the component, 

preventing conflicts with other stylesheets. The example in Listing 8-4 

demonstrates how CSS Modules are implemented in a React project.

Listing 8-4.  Using CSS Modules

/* Button.module.css */
.button {
  background-color: blue;
  color: white;
  padding: 10px;
  border-radius: 5px;
  font-size: 16px;
  cursor: pointer;
}

Importing and Using the Module in a Component:

// Button.js
import React from 'react';
import styles from './Button.module.css';

function Button() {
  return <button className={styles.button}>Click Me</button>;
}

export default Button;

Chapter 8  Styling Your Application



151

In this example, the button class defined in Button.module.css is 

imported into the Button component as an object (styles.button). 

When the component is rendered, React generates a unique class name 

(e.g., Button_button__3Kj4b), which ensures the style applies only to this 

specific component.

�Pros of CSS Modules
One of the main advantages of CSS Modules is that they scope styles 
locally to the components, ensuring a modular and conflict-free approach 

to styling. This is particularly beneficial in large-scale applications where 

multiple developers might work on various components. By scoping styles, 

you eliminate the need to follow strict class naming conventions to avoid 

clashes.

Furthermore, CSS Modules enable you to write clean and semantic 
CSS without worrying about manually generating unique class names. 

This helps maintain a clean separation of styles and logic, adhering to 

good coding practices. Another notable advantage is that CSS Modules 

integrate seamlessly with popular build tools like Create React App and 

Webpack. Most modern React setups come preconfigured to support CSS 

Modules, so minimal effort is required to get started.

�Cons of CSS Modules
Despite their benefits, CSS Modules do require a build setup that supports 

them, such as Webpack or Vite. For developers unfamiliar with these 

tools, configuring the project to enable CSS Modules might present a 

slight learning curve. Additionally, while CSS Modules excel at scoping 

styles, they can become verbose when used extensively, especially in 

components with dynamic class names or large style objects.

Chapter 8  Styling Your Application



152

�CSS-in-JS Libraries
CSS-in-JS libraries are a modern approach to styling React applications, 

where styles are written directly in JavaScript code. These libraries, such as 

styled-components and emotion, enable you to define component-level 

styles using JavaScript syntax. Unlike traditional CSS or CSS Modules, CSS- 

in-JS tightly integrates styling with logic, allowing for dynamic and context- 

aware styling.

CSS-in-JS libraries allow you to define styles as JavaScript variables or 

template literals, which are then injected into the DOM as inline styles or 

scoped class names. This approach eliminates the need for external CSS 

files and provides a seamless styling solution within your components. The 

example in Listing 8-5 demonstrates the use of styled-components, one of 

the most popular CSS-in-JS libraries.

Listing 8-5.  Using Styled Components

import styled from 'styled-components';

const Button = styled.button`
  background-color: blue;
  color: white;
  padding: 10px;
  border-radius: 5px;
  font-size: 16px;
  cursor: pointer;

  &:hover {
    background-color: darkblue;
  }
`;

Chapter 8  Styling Your Application



153

const App = () => {
  return <Button>Click Me</Button>;
}

export default App;

In this example, the Button component is styled directly within the 

JavaScript file using styled.button. The styles are defined as template 

literals and include CSS features such as pseudo-classes (e.g., &:hover) 

for dynamic behaviors. When the component is rendered, a unique class 

name is automatically generated for the Button, ensuring the styles remain 

scoped and conflict-free.

The primary benefit of CSS-in-JS libraries is the ability to combine 
styles with logic seamlessly. By embedding styles within the component 

file, you ensure that styling logic stays closely tied to the component’s 

behavior and structure. This is especially useful for projects that require 

highly dynamic styles, such as themes or conditional styling based on 

component states.

�Dynamic Styling
With CSS-in-JS, you can dynamically change styles based on props, states, 

or themes. For instance, Listing 8-6 demonstrates dynamic styling using 

CSS-in-JS.

Listing 8-6.  Dynamic Styled Components

const Button = styled.button`
  �background-color: ${(props) => (props.primary ? 'blue' : 
'gray')};

  color: white;
  padding: 10px;
`;

Chapter 8  Styling Your Application



154

function App() {
  return (
    <>
      <Button primary>Primary</Button>
      <Button>Secondary</Button>
    </>
  );
}

Here, the primary prop determines the background color of the button 

dynamically, enabling component-level customization.

�Theming Support
Libraries like styled-components and emotion provide built-in support 

for theming, making it easy to manage global styles and themes across 

your application. You can define a theme and pass it to components using 

a ThemeProvider as mentioned in Listing 8-7.

Listing 8-7.  Theming Using ThemeProvider

import { ThemeProvider } from 'styled-components';

const theme = {
  colors: {
    primary: 'blue',
    secondary: 'gray',
  },
};

const Button = styled.button`
  background-color: ${(props) => props.theme.colors.primary};
  color: white;
  padding: 10px;
`;

Chapter 8  Styling Your Application



155

const App = () => {
  return (
    <ThemeProvider theme={theme}>
      <Button>Click Me</Button>
    </ThemeProvider>
  );
}

This approach centralizes your styles and makes them reusable across 

components, which is particularly beneficial for applications requiring 

light/dark modes or consistent design systems. CSS-in-JS automatically 

generates unique class names for components, ensuring that styles do 

not clash with other parts of the application. This eliminates the need for 

naming conventions or tools like CSS Modules.

�Using Preprocessors (SCSS/SASS)
Preprocessors like SASS (Syntactically Awesome Style Sheets) and its 

more commonly used extension SCSS provide an enhanced way to write 

CSS, adding features that make styles more powerful, maintainable, and 

reusable. By extending the capabilities of traditional CSS, preprocessors 

streamline styling workflows, particularly for large projects with complex 

design requirements.

While CSS works well for basic styling, it lacks features like variables, 

nesting, mixins, and functions that make styles easier to manage. SCSS 

and SASS fill this gap, enabling you to write cleaner and more organized 

styles. SCSS syntax closely resembles traditional CSS, making it easier for 

developers to transition, while SASS offers a more concise, indentation-

based syntax.

Chapter 8  Styling Your Application



156

�Features of SCSS/SASS
Variables: Variables allow you to define reusable values, such as colors, 

fonts, or spacing, making it easy to maintain consistency across your 

application as shown in Listing 8-8.

Listing 8-8.  Reusable Variables in SCSS

// styles.scss
$primary-color: blue;
$padding: 10px;

.button {
  background-color: $primary-color;
  color: white;
  padding: $padding;
  border-radius: 5px;
}

Here, the $primary-color and $padding variables are reused to 

ensure uniform styling for buttons. Changing a single variable updates all 

instances where it is used, reducing redundancy.

Nesting: SCSS allows you to nest styles within parent selectors, 

reflecting the structure of your HTML and reducing repetitive code as 

shown in Listing 8-9.

Listing 8-9.  Nesting in SCSS

// styles.scss
.navbar {
  background-color: blue;

  ul {
    list-style: none;

Chapter 8  Styling Your Application



157

    li {
      display: inline-block;

      a {
        text-decoration: none;
        color: white;

        &:hover {
          color: yellow;
        }
      }
    }
  }
}

The nested syntax improves readability and eliminates the need for 

repeatedly typing parent class names. In this example, the hover state for 

the anchor <a> element is neatly nested within the .navbar class structure.

Mixins: Mixins allow you to define reusable blocks of styles that can be 

included in multiple selectors. They support dynamic inputs, making them 

highly versatile for repetitive tasks as shown in Listing 8-10.

Listing 8-10.  Mixins in SCSS

// styles.scss
@mixin button-style($bg-color) {
  background-color: $bg-color;
  color: white;
  padding: 10px;
  border-radius: 5px;
}

.primary-button {
  @include button-style(blue);
}

Chapter 8  Styling Your Application



158

.secondary-button {
  @include button-style(gray);
}

Here, the @mixin directive defines a reusable style for buttons, and 

@include applies the mixin to individual components with dynamic 

background colors.

Functions and Operations: SCSS supports mathematical operations 

and functions for creating dynamic styles, such as adjusting colors, 

margins, or sizes as shown in Listing 8-11.

Listing 8-11.  Functions and Operations in SCSS

$base-size: 16px;

.header {
  font-size: $base-size * 2; // 32px
}

.button {
  background-color: lighten(blue, 10%);
}

Functions like lighten() and mathematical calculations simplify tasks 

that would otherwise require manual adjustments in traditional CSS.

�How to Use SCSS/SASS in React
To integrate SCSS/SASS in a React project, you need to configure a 

preprocessor using tools like node-sass or sass. Install SASS via npm, 

rename your CSS files with a .scss extension (e.g., styles.scss), and 

import the SCSS file into your React component as shown in Listing 8-12.

Chapter 8  Styling Your Application



159

Listing 8-12.  Install SASS

npm install sass

// Button.jsx
import './styles.scss';

const Button = () => {
  return <button className="button">Click Me</button>;
}

export default Button;

When the project compiles, the SCSS file will be transformed into 

standard CSS and injected into the DOM.

�Styling with Frameworks 
(Bootstrap, Tailwind)
CSS frameworks such as Bootstrap and Tailwind CSS offer prebuilt styles 

and utility classes that streamline the process of creating visually appealing 

and consistent user interfaces. These frameworks save time by providing 

ready-to-use components, such as buttons, forms, and grids, eliminating 

the need to write extensive custom CSS from scratch.

Bootstrap, one of the most popular frameworks, follows a component-

based approach and comes with predefined styles for components like 

navigation bars, modals, and cards. Developers can quickly integrate these 

components into their React applications to ensure a clean and polished 

UI. For example, a Bootstrap button can be created by adding class names 

like btn and btn-primary as shown in Listing 8-13.

Chapter 8  Styling Your Application



160

Listing 8-13.  Integrate Bootstrap Classes

const BootstrapButton = () => {
  return <button className="btn btn-primary">Click Me</button>;
}

Tailwind CSS, on the other hand, takes a utility-first approach, 

allowing developers to apply styles directly to elements using small, 

composable classes. Instead of relying on prestyled components, 

Tailwind gives developers full control over the design while maintaining 

consistency. For instance, a button styled using Tailwind might look like 

Listing 8-14.

Listing 8-14.  Integrate Tailwind Classes

const TailwindButton = () => {
  return (
    �<button className="bg-blue-500 text-white py-2 px-4 

rounded">
      Click Me
    </button>
  );
}

The major advantage of frameworks like Tailwind CSS is their 

customizability and flexibility. Utility classes enable fine-grained styling 

without writing custom CSS, making it possible to build unique designs 

quickly. However, excessive use of utility classes can lead to bloated HTML 

and reduce code readability if not managed properly.

CSS frameworks come with both advantages and challenges that 

developers must carefully consider. One of the key benefits is speed—

prebuilt styles and utility classes significantly reduce development time, 

allowing developers to quickly prototype and implement UI designs 

without starting from scratch. Frameworks also promote consistency by 

Chapter 8  Styling Your Application



161

enforcing a uniform design across the application, ensuring a cohesive 

look and feel. Additionally, frameworks like Tailwind CSS and Bootstrap 

offer customization options. Tailwind’s utility classes provide fine-grained 

control over styles, while Bootstrap’s theming capabilities allow developers 

to adapt the default styles to meet project-specific requirements.

However, there are some drawbacks to using frameworks. One major 

concern is code bloat, as overusing utility classes or relying too heavily 

on prebuilt components can clutter the HTML, making the codebase 

harder to read and maintain. Furthermore, frameworks can lead to 

generic designs, especially when developers fail to customize the default 

styles. This can result in applications that look similar to others, lacking 

uniqueness and brand identity. To overcome these challenges, developers 

should strike a balance by using frameworks thoughtfully, combining their 

strengths with custom styles for better performance and a distinctive user 

interface.

�Responsive Design Techniques
Responsive design is critical to ensuring that modern applications adapt 

seamlessly to various screen sizes and devices, providing a consistent 

user experience across desktops, tablets, and smartphones. In React 

applications, media queries are a popular technique to handle responsive 

behavior. By defining styles that adjust dynamically based on screen 

dimensions, developers can control elements like padding, margins, and 

layouts.

For example, consider a container element that changes its padding 

based on screen size. Using CSS media queries, you can implement the 

code as shown in Listings 8-15 and 8-16.

Chapter 8  Styling Your Application



162

Listing 8-15.  Sample Style.css

.container {
  padding: 20px;
  background-color: lightgray;
  text-align: center;
}

@media (max-width: 768px) {
  .container {
    padding: 10px;
    background-color: lightblue;
  }
}

Listing 8-16.  Sample Container File

import './styles.css';

const Container = () => {
  return <div className="container">Responsive Container</div>;
}

export default Container;

In this example, when the screen width is reduced to 768px or smaller, 

the container's padding is reduced to 10px, and its background color 

changes to light blue. This ensures that the content remains visually 

appealing and readable on smaller devices.

Responsive Frameworks like Bootstrap or Tailwind CSS offer 

predefined grid systems and utility classes that simplify responsive 

development. For instance, Bootstrap provides a grid layout that allows 

developers to create flexible and responsive components quickly as 

illustrated in Listing 8-17. To use Bootstrap’s grid, structure your layout 

using col classes.

Chapter 8  Styling Your Application



163

Listing 8-17.  Responsive Grid with Bootstrap

import 'bootstrap/dist/css/bootstrap.min.css';

const ResponsiveGrid = () => {
  return (
    <div className="container">
      <div className="row">
        <div className="col-md-6 col-sm-12">Column 1</div>
        <div className="col-md-6 col-sm-12">Column 2</div>
      </div>
    </div>
  );
}

export default ResponsiveGrid;

In this example, the grid system ensures that the two columns appear 

side by side on medium-sized screens (using col-md-6) and stack 

vertically on smaller screens (using col-sm-12). For more utility-driven 

frameworks like Tailwind CSS, responsiveness can be achieved using 

utility classes as illustrated in Listing 8-18.

Listing 8-18.  Responsive Button with Tailwind CSS

const ResponsiveButton = () => {
  return (
    �<button className="bg-blue-500 text-white px-4 py-2 rounded 

md:px-6 md:py-3">
      Responsive Button
    </button>
  );
}

export default ResponsiveButton;

Chapter 8  Styling Your Application



164

Here, Tailwind classes like md:px-6 and md:py-3 ensure that the button 

padding increases on medium-sized screens and larger. To ensure a truly 

responsive design, always test your application on multiple devices, screen 

sizes, and orientations. Browser developer tools, like Chrome DevTools, 

offer responsive mode for quick validation and fine-tuning. Combining 

traditional media queries with frameworks like Bootstrap or Tailwind and 

modern tools ensures your application provides a seamless and intuitive 

experience across all platforms.

�Best Practices for Styling
When it comes to styling React applications, following best practices 

ensures maintainable, scalable, and accessible code. First, it is crucial 

to organize your styles effectively. Separate global styles, component-

specific styles, and utility styles into their respective files or modules 

to avoid clutter and improve maintainability. This organization helps 

maintain clarity as your application grows. To promote consistency across 

your design, focus on reusing styles by leveraging variables, mixins, 

or reusable classes, particularly when using preprocessors like SASS or 

frameworks like Tailwind CSS.

While inline styles can be useful for quick fixes or dynamic styling, it is 

recommended to avoid inline styles for large-scale applications. External 

stylesheets, CSS Modules, or CSS-in-JS libraries like styled-components 

are better alternatives, as they improve readability and simplify updates. 

Adopting a naming convention such as BEM (Block Element Modifier) 

further enhances maintainability by providing a structured approach to 

naming classes, making it easier to understand relationships between 

elements.

Accessibility testing should be an integral part of your styling process. 

Ensure your styles accommodate keyboard navigation and screen 

readers, with a focus on sufficient contrast ratios, clear focus states, and 

Chapter 8  Styling Your Application



165

responsive font sizes for readability. Neglecting accessibility can alienate 

users with disabilities, compromising the overall user experience. Finally, 

avoid overusing global styles. While global styles are necessary for base 

resets or common utilities, excessive use can lead to unintended side 

effects, making debugging and updates more complex.

By following these best practices, you can ensure a well-organized, 

maintainable, and inclusive styling approach that aligns with modern 

development standards.

�Summary
In this chapter, we explored a range of styling techniques to enhance React 

applications, ensuring they are visually appealing, maintainable, and 

responsive. We began with traditional CSS, where external stylesheets are 

linked to components, offering simplicity and familiarity for developers. 

Moving forward, we introduced CSS Modules, which allow styles to 

be scoped locally to components, preventing class name collisions in 

large applications. We also delved into CSS-in-JS libraries like styled-
components that enable writing styles directly in JavaScript, promoting 

dynamic styling and greater flexibility.

Additionally, we covered framework-based styling using tools like 

Bootstrap and Tailwind CSS, which provide prebuilt styles and utility 

classes to speed up development. These frameworks ensure consistency 

and responsiveness but require careful handling to avoid bloated HTML 

and overly generic designs. To address modern design challenges, we 

explored responsive design techniques, including media queries and 

responsive frameworks, which ensure applications adapt seamlessly to 

various screen sizes and devices. Lastly, we emphasized best practices for 
styling, such as organizing styles, reusing code, following conventions like 

BEM, and testing for accessibility to ensure an inclusive user experience.

Chapter 8  Styling Your Application



166

In the next chapter, we will dive into lifecycle methods and Hooks in 

React. You will learn how React components manage their lifecycle stages, 

from mounting to unmounting, and how Hooks like useEffect, useState, 

and useContext allow functional components to handle state, side effects, 

and logic efficiently. Mastering these concepts will enable you to build 

dynamic, reactive, and efficient applications.

Chapter 8  Styling Your Application



167© Nitesh Upadhyaya 2025 
N. Upadhyaya, Advanced Front-End Development,  
https://doi.org/10.1007/979-8-8688-1318-4_9

CHAPTER 9

Lifecycle Methods 
and Hooks
React components follow a well-defined lifecycle, progressing 

through distinct phases from their creation to removal from the 

DOM. Understanding this lifecycle is crucial for managing state, handling 

side effects, and ensuring efficient performance in dynamic applications.

Class components traditionally relied on lifecycle methods 

like componentDidMount, componentDidUpdate, and 

componentWillUnmount to interact with these phases. However, the 

introduction of React Hooks, such as useEffect and useState, transformed 

functional components, enabling them to manage state and lifecycle 

events more intuitively and with less complexity.

This chapter explores the component lifecycle's key phases—

mounting, updating, and unmounting—alongside their corresponding 

lifecycle methods and hooks. Through practical examples, advanced 

techniques, and best practices, you will learn how to leverage these tools 

to create clean, efficient, and responsive applications. Whether you're 

working with class components or functional components, mastering 

these concepts is fundamental to writing modern React applications.

https://doi.org/10.1007/979-8-8688-1318-4_9#DOI


168

�Understanding the Component Lifecycle
React components follow a structured lifecycle that governs their behavior 

from creation to removal. This lifecycle is divided into three key phases: 

mounting, updating, and unmounting. Understanding and managing 

these phases allow developers to handle tasks like state initialization, side 

effects, DOM updates, and resource cleanup efficiently.

•	 Mounting Phase: This phase begins when a 

component is created and inserted into the DOM. It is 

ideal for tasks such as setting up initial state or fetching 

data. For example:

•	 In class components, use the componentDidMount 

method to fetch API data after the component is 

rendered.

•	 In functional components, use the useEffect 

hook with an empty dependency array [] for 

similar tasks.

•	 Updating Phase: This phase occurs when a 

component’s state or props change, triggering a re- 

render. Developers use this phase to update the DOM 

or respond to user interactions.

•	 Use componentDidUpdate in class components 

to handle updates or the useEffect hook with 

dependencies in functional components.

•	 For performance optimization, the 

shouldComponentUpdate method allows you to 

control unnecessary re-renders.

Chapter 9  Lifecycle Methods and Hooks



169

•	 Unmounting Phase: This final phase removes the 

component from the DOM. Developers must clean up 

resources like event listeners, timers, or subscriptions 

to prevent memory leaks.

•	 In class components, use the 

componentWillUnmount method.

•	 In functional components, implement the cleanup 

function within the useEffect hook.

React also provides an Error-Handling Phase through the 

componentDidCatch method to gracefully manage errors during rendering 

or lifecycle events by logging errors or displaying fallback UIs.

By leveraging lifecycle methods and hooks effectively, developers can 

optimize performance, manage resources efficiently, and ensure data 

consistency in React applications.

�Lifecycle Methods in Class Components
Lifecycle methods in React are exclusive to class components and allow 

developers to hook into specific phases of a component's lifecycle. These 

methods are crucial for handling tasks such as data fetching, optimizing 

performance, and cleaning up resources. The lifecycle is divided into three 

main phases: mounting, updating, and unmounting.

�Mounting Phase
The mounting phase occurs when a component is created and inserted 

into the DOM as illustrated in Listing 9-1.

Chapter 9  Lifecycle Methods and Hooks



170

	 1.	 constructor: This is the first method called 

when the component is created. It is used for 

initializing the state and binding methods. Avoid 

calling setState here, as it is meant for the initial 

setup only.

	 2.	 componentDidMount: Called immediately after the 

component has been rendered into the DOM. It is 

commonly used for tasks like fetching data, starting 

subscriptions, or performing DOM operations.

Listing 9-1.  Mounting and Fetching Data

class DataFetcher extends React.Component {
  constructor(props) {
    super(props);
    this.state = { data: null };
  }

  componentDidMount() {
    fetch('https://jsonplaceholder.typicode.com/posts')
      .then((response) => response.json())
      .then((data) => this.setState({ data }));
  }

  render() {
    �return <div>{this.state.data ? 'Data Loaded' : 

'Loading...'}</div>;
  }
}

Caution A void calling setState in constructor. Use it in 
componentDidMount for state updates after the initial render.

Chapter 9  Lifecycle Methods and Hooks



171

�Updating Phase
The updating phase occurs when a component re-renders due to changes 

in its state or props as illustrated in Listing 9-2.

	 1.	 shouldComponentUpdate: This method allows you 

to control whether the component re-renders. 

By returning false, you can prevent unnecessary 

renders and optimize performance.

	 2.	 componentDidUpdate: Called after the component 

has been updated in the DOM. This is useful for 

performing actions in response to state or prop 

changes, such as fetching new data or updating 

the DOM.

�Unmounting Phase
The unmounting phase occurs when a component is removed from 

the DOM.

	 1.	 componentWillUnmount: This method is used to 

perform cleanup tasks, such as removing timers, 

event listeners, or unsubscribing from services. 

Proper cleanup ensures that resources are released 

and prevents memory leaks.

Listing 9-2.  Cleanup in componentWillUnmount

class Timer extends React.Component {
  componentDidMount() {
    �this.timerID = setInterval(() => console.

log('Tick'), 1000);
  }

Chapter 9  Lifecycle Methods and Hooks



172

  componentWillUnmount() {
    clearInterval(this.timerID);
  }

  render() {
    return <div>Timer Running</div>;
  }
}

Tip A lways clean up timers, event listeners, or subscriptions in 
componentWillUnmount to avoid memory leaks.

�Hooks for Functional Components
React introduced Hooks in version 16.8, revolutionizing functional 

components by enabling them to use state and lifecycle features 

previously exclusive to class components. Hooks allow developers to write 

cleaner, more concise code while avoiding the complexities of classes. The 

most used hooks include useState for managing state and useEffect for 

handling side effects.

�Using useEffect for Side Effects
The useEffect hook consolidates the functionality of componentDidMount, 

componentDidUpdate, and componentWillUnmount into a single method. 

It allows functional components to handle side effects like data fetching, 

DOM updates, or subscriptions.

Chapter 9  Lifecycle Methods and Hooks



173

The syntax for useEffect includes a function that performs the side 

effect and an optional cleanup function returned from it. A dependency 

array determines when the effect should rerun. If the dependency array 

is empty, the effect runs only once after the initial render as described in 

Listings 9-3 and 9-4.

Listing 9-3.  UseEffect Syntax

useEffect(() => {
  // Perform side effect
  return () => {
    // Cleanup
  };
}, [dependencies]);

Listing 9-4.  Data Fetching with useEffect

const DataFetcher = () => {
  const [data, setData] = React.useState(null);

  React.useEffect(() => {
    fetch('https://jsonplaceholder.typicode.com/posts')
      .then((response) => response.json())
      .then((data) => setData(data));
  }, []); // Empty dependency array ensures this runs once

  return <div>{data ? 'Data Loaded' : 'Loading...'}</div>;
}

The useState hook is used to manage the data state in functional 

components, providing a simple way to initialize and update state values. 

The useEffect hook is responsible for fetching data when the component 

mounts, as indicated by the empty dependency array, which ensures the 

effect runs only once after the initial render. This approach effectively 

Chapter 9  Lifecycle Methods and Hooks



174

replaces the componentDidMount lifecycle method used in class components, 

making the logic cleaner, more readable, and easier to manage. By 

consolidating state and side-effect logic into functional components, hooks 

simplify React development without sacrificing functionality.

�Managing State with useState
The useState hook introduces state management to functional components, 

allowing them to hold and update local state. Unlike class components where 

this.setState is used, useState provides a simpler way to declare state 

variables and update them as described in Listings 9-5 and 9-6.

Listing 9-5.  UseState Syntax

const [state, setState] = useState(initialValue);

The state holds the current value of the state, while the setState 

function is responsible for updating the state and triggering a re-render of 

the component. This ensures that any changes to the state are immediately 

reflected in the UI, keeping the component in sync with its data.

Listing 9-6.  Counter Component Using useState

const Counter = () => {
  const [count, setCount] = React.useState(0);

  return (
    <div>
      <p>Count: {count}</p>
      �<button onClick={() => setCount(count + 1)}> 

Increment</button>
    </div>
  );
}

Chapter 9  Lifecycle Methods and Hooks



175

The useState hook initializes the count state with an initial value of 0, 

providing a simple way to manage local state in functional components. 

The setCount function is used to increment the count whenever the 

button is clicked, updating the state and triggering a re-render. This 

approach replaces the use of this.state and this.setState in class 

components, making state management more straightforward and easier 

to implement.

�Advanced Hooks for Lifecycle Scenarios
React provides advanced hooks like useRef and useLayoutEffect to 

handle more complex lifecycle scenarios in functional components. These 

hooks offer powerful capabilities for managing mutable references and 

synchronizing logic after DOM updates.

The useRef hook is used to create a mutable reference that persists 

across re-renders. Unlike state variables, updating a useRef value does 

not trigger a re-render, making it useful for accessing DOM elements or 

maintaining values without causing unnecessary updates.

The useLayoutEffect hook, on the other hand, runs synchronously 

after DOM updates but before the browser paints the screen. It 

is particularly useful for tasks like measuring DOM elements or 

synchronizing scroll positions since it ensures that the DOM is updated 

before the effect runs. However, developers should use useLayoutEffect 

sparingly, as it can block rendering and impact performance if overused. 

The example in Listing 9-7 demonstrates the use of useRef to scroll an 

input field into view when the component mounts.

Chapter 9  Lifecycle Methods and Hooks



176

Listing 9-7.  Scroll to Input

const ScrollToInput = () => {
  const inputRef = React.useRef(null);

  React.useEffect(() => {
    inputRef.current.scrollIntoView({ behavior: 'smooth' });
  }, []);

  return <input ref={inputRef} />;
}

Here, useRef creates a reference to the input field, and the useEffect 

hook scrolls it into view when the component renders. This approach 

avoids triggering additional re-renders and efficiently interacts with 

the DOM.

Caution  Use useLayoutEffect only when necessary, such 
as for measuring elements or synchronizing the DOM, because it 
runs synchronously and can delay rendering. For most side effects, 
useEffect remains the preferred choice.

By combining hooks like useRef and useLayoutEffect, developers 

can handle advanced lifecycle scenarios, achieving greater control over 

the behavior of functional components while maintaining clean and 

efficient code.

�Example: A Timer Component with Cleanup
In this example illustrated in Listing 9-8, we build a Timer component 

using React hooks that dynamically updates the current time every second. 

This demonstrates how to use the useEffect hook for side effects and 

Chapter 9  Lifecycle Methods and Hooks



177

the cleanup function to prevent resource leaks. The output of the Timer 

component, as displayed in Figure 9-1, shows the current time dynamically 

updating every second.

Listing 9-8.  Timer Component with Hooks

const Timer = () => {
  const [time, setTime] = React.useState(new Date());

  React.useEffect(() => {
    // Start a timer that updates the state every second
    �const timerID = setInterval(() => setTime(new 

Date()), 1000);

    �// Cleanup function to clear the interval when the 
component unmounts

    return () => clearInterval(timerID);
  }, []); // Empty dependency array ensures this runs only once

  return <h1>{time.toLocaleTimeString()}</h1>;
}

Figure 9-1.  Timer component showing current time dynamically

Chapter 9  Lifecycle Methods and Hooks



178

In this example, we create a Timer component using React hooks 

to dynamically display the current time and update it every second. 

The component demonstrates the use of the useState hook for state 

management and the useEffect hook to handle side effects, along with a 

cleanup function to prevent resource leaks.

The useState hook initializes a state variable called time with the 

current date and time using new Date(). This state will be responsible 

for holding the current time, which needs to update at regular intervals. 

To achieve this, the useEffect hook sets up a timer using setInterval, 

which updates the time state every second by calling the setTime function 

with the updated value. The useEffect hook ensures that this side effect 

runs only once when the component mounts, as indicated by the empty 

dependency array [].

One crucial aspect of this implementation is the cleanup function 

returned by useEffect. React automatically invokes this cleanup function 

when the component unmounts, ensuring that the timer created with 

setInterval is cleared using clearInterval(timerID). This cleanup 

is critical because failing to clear the timer would allow it to continue 

running in the background, even after the component is no longer part of 

the DOM. Such lingering intervals can lead to memory leaks, unnecessary 

performance overhead, or unexpected behavior, especially when 

components remount multiple times.

The time state, which updates every second, is displayed using the 

toLocaleTimeString() method. This method formats the Date object 

into a readable time string, such as "10:45:20 AM." The formatted value 

is rendered within an <h1> element, and the UI seamlessly updates every 

second as the state changes.

By combining useState and useEffect, this Timer component 

replaces the traditional class component lifecycle methods like 

componentDidMount for setting up the timer and componentWillUnmount 

for cleanup. This approach makes the code cleaner and easier to maintain. 

Chapter 9  Lifecycle Methods and Hooks



179

Overall, this example illustrates how functional components with hooks 

can handle dynamic updates and resource cleanup efficiently, ensuring 

optimal performance and preventing memory leaks.

�Common Challenges and Solutions
When working with React components and hooks, developers often 

encounter common challenges that can impact application performance 

and behavior. One frequent issue is memory leaks, which occur when 

resources like timers, subscriptions, or event listeners are not cleaned up 

properly. The solution is to ensure that all side effects are cleaned up using 

the cleanup function in useEffect or the componentWillUnmount method 

in class components. Proper cleanup prevents lingering operations that 

could slow down or crash the application.

Another challenge is infinite loops in useEffect, which typically 

happen when dependencies in the effect's dependency array are not 

correctly defined. If a variable that changes frequently is included 

unnecessarily or omitted when needed, the effect will keep re-running 

indefinitely. The solution is to carefully manage the dependency array 

to include only the necessary variables, ensuring that the effect runs 

predictably and avoids unintended behavior.

Lastly, mixed logic in hooks can make code harder to read and 

maintain. Combining unrelated logic within a single useEffect hook can 

lead to confusion and reduced reusability. The recommended solution 

is to separate concerns by using multiple useEffect hooks. Each hook 

should handle a specific piece of logic, such as data fetching, event 

listeners, or cleanup. This approach promotes cleaner, modular code that 

is easier to understand and debug.

Chapter 9  Lifecycle Methods and Hooks



180

�Best Practices for Lifecycle Management
Effective lifecycle management ensures that React components remain 

efficient, maintainable, and free of resource leaks. To achieve this, it is 

important to keep effects focused by using separate useEffect hooks 

for different pieces of logic. Splitting logic into multiple hooks improves 

code clarity and modularity. Additionally, always use cleanup functions 

within useEffect to avoid resource leaks, such as uncleaned timers, event 

listeners, or subscriptions, which can lead to memory issues.

When working with dependencies in useEffect, carefully add only 

the variables that trigger necessary updates. Incorrect or excessive 

dependencies can cause unnecessary re-renders or infinite loops, so 

optimizing the dependency array is crucial.

Thorough testing is another key practice for lifecycle management. 

Simulating various lifecycle scenarios in unit tests ensures that 

effects, state updates, and cleanup logic work as expected under 

different conditions. Finally, while useLayoutEffect can be useful 

for synchronizing DOM updates, it should be used sparingly. Prefer 

useEffect for most side effects, as useLayoutEffect blocks rendering and 

can negatively impact performance if overused.

By following these best practices, developers can manage component 

lifecycles efficiently, write clean and predictable code, and optimize 

application performance.

�Summary
In this chapter, we explored the core concepts of managing the component 

lifecycle in both class components and functional components. We 

began by understanding lifecycle methods in class components, such as 

componentDidMount, componentDidUpdate, and componentWillUnmount, 

Chapter 9  Lifecycle Methods and Hooks



181

which allow developers to perform side effects like data fetching, DOM 

updates, and resource cleanup at different phases of a component’s 

existence.

We then introduced React Hooks, particularly useState and 

useEffect, which enable functional components to replicate the behavior 

of lifecycle methods. The useState hook allowed us to manage state in 

functional components, while useEffect consolidated lifecycle logic, 

providing a cleaner and more concise way to handle side effects and 

cleanup. Advanced hooks like useRef and useLayoutEffect were also 

discussed, showcasing their importance in managing references and 

synchronous DOM updates.

To reinforce these concepts, we implemented a practical example of a 

timer component that dynamically updates the current time. This example 

demonstrated the use of useEffect to set up and clean up an interval, 

ensuring proper resource management and preventing memory leaks.

Finally, we highlighted best practices for lifecycle management, 

emphasizing focused effects, proper cleanup, dependency optimization, 

and avoiding unnecessary use of useLayoutEffect. These practices help 

ensure clean, efficient, and maintainable React components.

In the next chapter, we will explore state management techniques that 

simplify data sharing across components and enhance the scalability of 

React applications.

Chapter 9  Lifecycle Methods and Hooks



183© Nitesh Upadhyaya 2025 
N. Upadhyaya, Advanced Front-End Development,  
https://doi.org/10.1007/979-8-8688-1318-4_10

CHAPTER 10

Managing State with 
Context and Redux
State management is a fundamental concept in React applications, 

ensuring that components stay in sync and reflect the current data 

efficiently. As applications grow in complexity, managing state across 

multiple components can become challenging. React offers two primary 

tools to address this problem: the React Context API for lightweight state 

sharing and Redux Toolkit for more robust, centralized state management. 

This chapter introduces both tools, explores their differences, and walks 

through a practical implementation using Redux Toolkit.

�Understanding State Management in React
State management refers to the process of handling and sharing the state 

of an application across its components. In modern web applications, 

managing state is crucial for ensuring that user interactions and dynamic 

data updates are handled seamlessly. At its core, state represents the 

data that determines the behavior and appearance of an application. For 

example, this could include user preferences, the contents of a shopping 

cart, or the current page in a multistep form. In simpler applications, 

managing state at the component level using tools like React’s useState 

hook can suffice. However, as applications grow in complexity, challenges 

https://doi.org/10.1007/979-8-8688-1318-4_10#DOI


184

such as synchronizing state across multiple components, handling nested 

component hierarchies, and preserving state during navigation or page 

reloads often arise.

One of the primary issues in larger applications is “prop drilling,” 

where state and its update logic must be passed through several layers of 

components. This not only increases the coupling between components 

but also makes the code more challenging to maintain and refactor. For 

instance, consider an ecommerce application where the shopping cart 

state is needed in multiple components, such as the product listing, cart 

summary, and checkout form. Managing such shared state using only local 

state would lead to deeply nested props and redundant code.

To address these challenges, global state management tools such as the 

React Context API and Redux Toolkit offer robust solutions. These tools 

enable developers to manage the state at a centralized location, making 

it accessible to any component that requires it. Beyond simplifying state 

sharing, these tools also bring added benefits such as easier debugging, 

better scalability, and more predictable behavior. By centralizing state 

management, developers can create applications that are not only easier to 

maintain but also more resilient to changes and feature additions.

�React Context API
The React Context API is a built-in solution that allows developers to 

share state across components without manually passing props. Context 

provides a way to “broadcast” data to child components, simplifying the 

process of managing global state. Context is a mechanism in React that 

enables components to share values like themes, user data, or application 

settings without explicitly passing props. It consists of three main parts: 

createContext, Provider, and useContext.

Chapter 10  Managing State with Context and Redux



185

To create context, use the createContext method, which returns 

a Provider and a Consumer. The Provider wraps components to 

provide data, while useContext allows child components to access the 

shared data. The example in Listing 10-1 shows how to use Context with 

useContext Hook.

Listing 10-1.  Using Context with useContext Hook

// ThemeProvider.jsx
import React, { createContext, useContext, useState } from 
'react';

const ThemeContext = createContext();

const ThemeProvider = ({ children }) => {
  const [theme, setTheme] = useState('light');
  return (
    <ThemeContext.Provider value={{ theme, setTheme }}>
      {children}
    </ThemeContext.Provider>
  );
}

const ThemedButton = () => {
  const { theme, setTheme } = useContext(ThemeContext);
  return (
    �<button onClick={() => setTheme(theme === 'light' ? 'dark' 

: 'light')}>
      Current Theme: {theme}
    </button>
  );
}

Chapter 10  Managing State with Context and Redux



186

const App = () => {
  return (
    <ThemeProvider>
      <ThemedButton />
    </ThemeProvider>
  );
}

In this example, the ThemeContext is created using the createContext 

method, which sets up a context for sharing data like the current theme 

state (light or dark) across multiple components. The ThemeProvider 

component wraps the child components with the ThemeContext.Provider 

and provides the theme state (theme) and an updater function (setTheme) 

as the context value. By doing so, any child component within the provider 

can access and modify the shared state without the need to pass props 

explicitly through multiple levels, solving the problem of prop drilling.

The useContext hook simplifies accessing the context in 

child components. In the ThemedButton component, we use 

useContext(ThemeContext) to directly retrieve the theme value and the 

setTheme function. When the button is clicked, the setTheme function 

toggles the theme state between “light” and “dark.” React automatically 

re-renders all components consuming the context when the state updates, 

ensuring the UI reflects the current theme seamlessly.

This approach showcases the power of React Context for global state 

management without external libraries, making it ideal for scenarios like 

theming, user authentication, or sharing simple application-wide data. 

By wrapping components in a context provider and accessing shared 

state using the useContext hook, developers can create cleaner, more 

maintainable code without unnecessary prop-passing.

Chapter 10  Managing State with Context and Redux



187

�Introduction to Redux Toolkit
Redux Toolkit is the official, modernized toolset for Redux, simplifying 

state management with minimal boilerplate. Unlike vanilla Redux, Redux 

Toolkit streamlines common tasks like creating reducers, managing 

actions, and setting up the store.

Redux Toolkit is a collection of utilities that help manage global state 

efficiently. It provides abstractions like createSlice for reducers and 

actions, configureStore for creating the store, and hooks like useSelector 

and useDispatch for connecting state to components.

�Core Features of Redux Toolkit

	 1.	 createSlice: Combines reducers and actions into a 

single function

	 2.	 configureStore: Simplifies store creation with 

built-in middleware

	 3.	 createAsyncThunk: Manages asynchronous 

operations like API calls

Redux Toolkit simplifies state management in React applications by 

reducing boilerplate code and providing modern utilities to manage global 

state effectively. The setup involves a few key steps, including installation, 

slice creation, store configuration, and integrating the store into the React 

app. Let’s break this down step by step.

Step 1: Install Redux Toolkit and React-Redux
The first step is to install the required dependencies as shown 

in Listing 10-2. Redux Toolkit provides the core features for state 

management, while react-redux allows React components to connect to 

the Redux store. Run the command in Listing 10-2.

Chapter 10  Managing State with Context and Redux



188

Listing 10-2.  Install Dependencies

npm install @reduxjs/toolkit react-redux

This command installs both the Redux Toolkit and react-redux 

libraries, which are essential for connecting the store to the React app.

Step 2: Create a Slice
A slice represents a logical piece of the application’s state as illustrated 

in Listing 10-3, combining the state structure, reducer logic, and action 

creators into a single, manageable unit. Redux Toolkit’s createSlice 

simplifies this process.

Listing 10-3.  Creating a Slice

import { createSlice } from '@reduxjs/toolkit';

const initialState = {
  cart: [],
};

const cartSlice = createSlice({
  name: 'cart', // Slice name
  initialState, // Initial state
  reducers: {
    addItem: (state, action) => {
      state.cart.push(action.payload); // Add item to cart
    },
    removeItem: (state, action) => {
      �state.cart = state.cart.filter((item) => item.id !== 

action.payload.id); // Remove item
    },
  },
});

Chapter 10  Managing State with Context and Redux



189

// Export actions and reducer
export const { addItem, removeItem } = cartSlice.actions;
export default cartSlice.reducer;

In this example, the createSlice function simplifies state 

management by generating the state, actions, and reducer logic all in 

one place. The initialState defines the default structure of the slice, 

where the cart is initialized as an empty array to represent an empty 

shopping cart. The reducers field contains the logic to manipulate the 

state. Specifically, the addItem reducer pushes a new item into the cart 

array, effectively adding it to the state. Similarly, the removeItem reducer 

filters the cart array to remove an item that matches the given id, ensuring 

that items are removed efficiently. Finally, the actions (addItem and 

removeItem) and the reducer are exported. The actions allow components 

to trigger state updates, while the reducer integrates seamlessly into the 

Redux store for global state management. This approach makes the state 

logic concise, reusable, and easy to maintain.

Step 3: Configure the Store
The store is where the global state is managed. Redux Toolkit provides 

the configureStore function, which simplifies creating the store and 

includes default middleware for development as illustrated in Listing 10-4.

Listing 10-4.  Configuring the Store

import { configureStore } from '@reduxjs/toolkit';
import cartReducer from './cartSlice';

const store = configureStore({
  reducer: {
    cart: cartReducer, // Add the cart slice to the store
  },
});

export default store;

Chapter 10  Managing State with Context and Redux



190

The configureStore function simplifies the process of combining 

reducers for all slices in a Redux application. In this example, the 

cartReducer, which was exported from the cartSlice, is integrated into 

the store and assigned to the cart key. This allows the cart slice to manage 

its corresponding piece of the application state. The configured store is 

then exported so it can be provided to the React application, enabling 

components to access and interact with the global state seamlessly.

Step 4: Provide the Store to the React App
To make the Redux store available to all components in the React 

application, the store is passed to the Provider component from the react- 

redux library. The Provider wraps the root component of the app, allowing 

child components to access the global state as shown in Listing 10-5.

Listing 10-5.  Providing the Store to the App

import React from 'react';
import { Provider } from 'react-redux';
import store from './store';
import App from './App';
function Root() {
  return (
    <Provider store={store}>
      <App />
    </Provider>
  );
}
export default Root;

The Provider component wraps the root App component and takes the 

Redux store as a prop. This setup ensures that the store is made available 

to all components within the application. By doing so, components can 

Chapter 10  Managing State with Context and Redux



191

access the global state using the useSelector hook and dispatch actions 

to update the state using the useDispatch hook, enabling seamless state 

management throughout the application.

�Connecting Redux Toolkit with 
React Components
Redux Toolkit integrates seamlessly with React through the react-redux 

library. It offers hooks like useSelector to access state and useDispatch to 

trigger actions, and the createSlice function combines the reducer logic 

and actions in one place as illustrated in Listing 10-6.

Listing 10-6.  Counter Slice

import { createSlice, configureStore } from '@reduxjs/toolkit';
import { Provider, useSelector, useDispatch } from 
'react-redux';

// Define a slice
const counterSlice = createSlice({
  name: 'counter',
  initialState: { value: 0 },
  reducers: {
    increment: (state) => { state.value += 1; },
    decrement: (state) => { state.value -= 1; },
  },
});

// Configure store
const store = configureStore({ reducer: { counter: 
counterSlice.reducer } });

Chapter 10  Managing State with Context and Redux



192

// Counter component
const Counter = () => {
  const count = useSelector((state) => state.counter.value);
  const dispatch = useDispatch();
  return (
    <div>
      �<button onClick={() => dispatch(counterSlice.actions.

decrement())}>-</button>
      <span>{count}</span>
      �<button onClick={() => dispatch(counterSlice.actions.

increment())}>+</button>
    </div>
  );
}
// App component
const App = () => {
  return (
    <Provider store={store}>
      <Counter />
    </Provider>
  );
}

In this example, the createSlice function is used to define the 

state and actions, such as increment and decrement, for managing the 

application’s state in a structured manner. The useSelector hook allows 

the component to retrieve the current state value from the Redux store, 

ensuring the component stays updated with the latest state. Meanwhile, 

the useDispatch hook provides a way to dispatch actions, such as 

triggering increment or decrement, to update the state. Together, these 

hooks seamlessly connect the component to the Redux store, enabling 

efficient state management and reactivity.

Chapter 10  Managing State with Context and Redux



193

�Comparing Context API and Redux Toolkit
While both the Context API and Redux Toolkit can manage global state, 

they serve different purposes. The Context API is ideal for simple use 

cases like themes, authentication, or small apps. On the other hand, Redux 
Toolkit is better suited for complex applications that require structured 

state management, advanced debugging, and middleware support. 

Figure 10-1 shows the comparison in terms of setup complexity, debugging 

tools, boilerplate code, and use cases.

Figure 10-1.  Comparison of Context API and Redux Toolkit

�Best Practices for State Management
Effective state management is essential for building scalable and 

maintainable React applications. The React Context API is an excellent 

choice for lightweight state needs, such as theming, authentication, 

or sharing user preferences across components. It allows for seamless 

global state sharing without the complexity of Redux, making it ideal for 

small- to medium-sized features. However, for larger applications with 

complex state requirements, the Redux Toolkit is highly recommended. Its 

structured approach, reduced boilerplate, and features like createSlice 

Chapter 10  Managing State with Context and Redux



194

and createAsyncThunk simplify managing reducers and asynchronous 

logic, making it a powerful tool for enterprise-level applications.

To optimize performance, it is important to keep the state normalized, 

ensuring related data is stored in a single source of truth rather than 

duplicating it across the state. This avoids redundancy and makes updates 

more efficient. Additionally, splitting the state into logical slices—where 

each slice represents a distinct domain or feature, such as cart, user, or 

products—keeps reducers modular and easy to manage. When fetching data 

or syncing state with APIs, always use hooks like useEffect or subscriptions 

to ensure the state remains consistent with the server. Following these 

best practices ensures that your state management strategy is efficient, 

maintainable, and well suited for both simple and complex applications.

�Example: Building a Shopping Cart 
with Redux Toolkit
In this practical example, we will create a fully functional shopping cart 

application that uses Redux Toolkit to manage the state of the cart. The 

cart will support actions to add, remove, and update items, while the user 

interface will reflect these changes dynamically. Redux Toolkit simplifies 

state management by combining state, actions, and reducers into slices, 

allowing for clean and organized code. Let’s walk through the example 

step by step, demonstrating how the cart state is managed efficiently with 

Redux Toolkit and how it interacts with React components.

�Step 1: Define the Cart Slice
Using createSlice from Redux Toolkit, we define a slice of state to manage 

the shopping cart. This slice will include an initialState and reducers for 

actions like addItem, removeItem, and updateItemQuantity as illustrated 

in Listing 10-7.

Chapter 10  Managing State with Context and Redux



195

Listing 10-7.  Creating a Slice

import { createSlice } from '@reduxjs/toolkit';

const initialState = {
  cart: [],
};

const cartSlice = createSlice({
  name: 'cart',
  initialState,
  reducers: {
    addItem: (state, action) => {
      state.cart.push(action.payload); // Add new item
    },
    removeItem: (state, action) => {
      �state.cart = state.cart.filter((item) => item.id !== 

action.payload.id); // Remove item by ID
    },
    updateItemQuantity: (state, action) => {
      �const item = state.cart.find((item) => item.id === 

action.payload.id);
      if (item) {
        �item.quantity = action.payload.quantity; // Update 

quantity
      }
    },
  },
});

export const { addItem, removeItem, updateItemQuantity } = 
cartSlice.actions;
export default cartSlice.reducer;

Chapter 10  Managing State with Context and Redux



196

Here, the createSlice function defines the cart’s state and actions. 

The addItem reducer adds a new item to the cart, removeItem removes 

an item based on its unique ID, and updateItemQuantity updates the 

quantity of an existing item. These actions will later be dispatched by 

components to modify the state.

�Step 2: Configure the Store
We configure the Redux store and add the cartSlice reducer as shown in 

Listing 10-8.

Listing 10-8.  Configuring the Store

import { configureStore } from '@reduxjs/toolkit';
import cartReducer from './cartSlice';

const store = configureStore({
  reducer: {
    cart: cartReducer,
  },
});

export default store;

The configureStore function combines the reducers and sets up the 

Redux store. Here, the cartReducer manages the cart-related state and 

integrates seamlessly into the global store.

�Step 3: Provide the Store to the Application
The Redux store is provided to the React application using the Provider 

component from react-redux as shown in Listing 10-9.

Chapter 10  Managing State with Context and Redux



197

Listing 10-9.  Providing the Store to the App

import React from 'react';
import { Provider } from 'react-redux';
import store from './store';
import App from './App';

const Root = () => {
  return (
    <Provider store={store}>
      <App />
    </Provider>
  );
}

export default Root;

The Provider wraps the root App component, passing the store as a 

prop. This ensures that all components in the application can access the 

Redux state and dispatch actions.

�Step 4: Build the Shopping Cart Component
The shopping cart component interacts with the Redux store to display 

cart items, and it uses useSelector to access the state and useDispatch 

to dispatch actions as shown in Listing 10-10. The output of the shopping 

cart component is shown in Figure 10-2, demonstrating how items are 

displayed along with controls for updating and removing them.

Listing 10-10.  Shopping Cart Component

import React from "react";
import { useSelector, useDispatch } from "react-redux";
import { addItem, removeItem, updateItemQuantity } from "../../

Chapter 10  Managing State with Context and Redux



198

store/cartSlice";
import "./ShoppingCart.css";

const ShoppingCart = () => {
  const cart = useSelector((state) => state.cart.cart);
  const dispatch = useDispatch();

  const handleAddItem = () => {
    �const newItem = { id: Date.now(), name: "New Product", 

quantity: 1 };
    dispatch(addItem(newItem));
  };

  const handleRemoveItem = (id) => {
    dispatch(removeItem({ id }));
  };

  const handleUpdateQuantity = (id, quantity) => {
    dispatch(updateItemQuantity({ id, quantity }));
  };

  return (
    <div className="shopping-cart">
      <h1>Shopping Cart</h1>
      <button className="add-item" onClick={handleAddItem}>
        Add Item
      </button>
      <ul className="cart-list">
        {cart.map((item) => (
          <li key={item.id} className="cart-item">
            <div className="item-info">
              <div className="item-name">{item.name}</div>
              �<div className="item-quantity">Quantity: {item.

quantity}</div>

Chapter 10  Managing State with Context and Redux



199

            </div>
            <div className="item-actions">
              <button
                className="update-button"
                �onClick={() => handleUpdateQuantity(item.id, 

item.quantity + 1)}
              >
                Increase
              </button>
              <button
                className="remove-button"
                onClick={() => handleRemoveItem(item.id)}
              >
                Remove
              </button>
            </div>
          </li>
        ))}
      </ul>
    </div>
  );
};

export default ShoppingCart;

Chapter 10  Managing State with Context and Redux



200

Figure 10-2.  Shopping cart component with Redux state 
management

The useSelector hook is a critical tool for accessing the current 

state managed by Redux. In this example, it retrieves the cart state, 

enabling the component to dynamically render a list of items in the 

shopping cart. The useDispatch hook complements this by providing 

a mechanism to dispatch actions that update the state. For instance, 

the handleAddItem function leverages useDispatch to add a new item 

to the cart, handleRemoveItem removes an item based on its unique ID, 

and handleUpdateQuantity modifies the quantity of an existing item in 

the cart. Together, these hooks enable seamless interaction between the 

Chapter 10  Managing State with Context and Redux



201

component and the Redux store. Additionally, the cart.map function 

iterates over the cart array, rendering each item along with buttons to 

trigger the respective actions (e.g., remove or update quantity). This 

integration ensures the UI stays responsive and reflects the latest state 

changes effectively.

This example demonstrates the power and simplicity of Redux 

Toolkit for managing application state. By organizing state into slices and 

connecting them with React components using hooks like useSelector 

and useDispatch, Redux Toolkit eliminates boilerplate code and provides 

a clean, structured approach to state management. The shopping cart 

example illustrates how Redux Toolkit makes it easy to build scalable and 

maintainable React applications.

�Summary
In this chapter, we explored state management in React using the React 
Context API and Redux Toolkit, two versatile tools that address the 

challenges of managing local and global state. The Context API provides 

a lightweight solution for simple data sharing across components, 

eliminating the need for prop drilling. For more complex applications, 

Redux Toolkit stands out as a robust and efficient framework, simplifying 

state management with tools like createSlice, configureStore, and 

hooks such as useSelector and useDispatch.

We demonstrated the setup of Redux Toolkit, including creating 

slices, configuring the Redux store, and connecting the store to React 

components using the Provider component. Through a practical example 

of building a shopping cart, we showcased how Redux Toolkit efficiently 

handles state updates with actions to add, remove, and update items in the 

cart, ensuring a responsive and consistent UI.

Chapter 10  Managing State with Context and Redux



202

Additionally, best practices were discussed, including keeping state 

normalized, splitting it into logical slices, and selecting the right state 

management tool for the application’s complexity. These guidelines 

ensure maintainable and scalable React applications.

In the next chapter, we will focus on managing user input in forms, 

implementing validation logic, and ensuring a seamless user experience 

with controlled components and libraries like Formik and React 

Hook Form.

Chapter 10  Managing State with Context and Redux



203© Nitesh Upadhyaya 2025 
N. Upadhyaya, Advanced Front-End Development,  
https://doi.org/10.1007/979-8-8688-1318-4_11

CHAPTER 11

Form Handling 
and Validation
Forms are the primary way users interact with web applications. They 

enable data collection for purposes like user authentication, product 

search, and order submission. In React, form handling can be simplified by 

using controlled and uncontrolled components. This chapter will cover 

both approaches, delve into validation techniques, explore third-party 

libraries, and implement a practical checkout form example.

�Controlled vs. Uncontrolled Components
�Controlled Components
Controlled components are a core concept in React that simplify the 

process of managing form data. These components rely exclusively 

on React state to manage and control the values of form inputs. In 

this approach, every input field is bound to a piece of state in the 

component, and any changes to the input value are handled by an event, 

such as onChange, that updates the corresponding state variable. This 

ensures that React is always in control of the data displayed in the form, 

providing a seamless way to synchronize the user interface (UI) with the 

application’s state.

https://doi.org/10.1007/979-8-8688-1318-4_11#DOI


204

One of the primary advantages of controlled components is their ability 

to make validation straightforward. Since the input values are managed by 

React state, developers can easily incorporate validation logic within the same 

onChange or onSubmit handlers. For instance, you can immediately check if an 

email is valid as the user types or prevent submission if required fields are left 

empty. Another significant benefit is the complete synchronization between 

the UI and the application state. This synchronization not only ensures 

consistency but also allows developers to prefill forms with data or reset them 

programmatically by simply modifying the state. Controlled components are 

particularly useful in complex forms where real-time feedback, such as error 

messages or dynamic input validation, is essential. Their declarative nature 

aligns perfectly with React’s design philosophy, making form management 

both predictable and efficient as illustrated in Listing 11-1.

Listing 11-1.  Controlled Component

const ControlledExample = () => {
  const [username, setUsername] = React.useState("");

  const handleChange = (e) => {
    setUsername(e.target.value);
  };

  return (
    <form>
      <label>
        Username:
        �<input type="text" value={username} 

onChange={handleChange} />
      </label>
      <p>Typed Username: {username}</p>
    </form>
  );
}

Chapter 11  Form Handling and Validation



205

This example demonstrates the essence of a controlled component in 

React. The username state is tied directly to the value of the input field, and 

any changes made by the user are handled via the onChange event, which 

updates the state with the new value. This setup ensures that React has full 

control over the form data, allowing the application state and UI to stay 

perfectly synchronized. Additionally, since the state drives the component, 

developers can easily manipulate the form programmatically or validate 

the input data during the user’s interaction. This makes controlled 

components highly suitable for scenarios requiring dynamic form updates 

or real-time validation.

�Uncontrolled Components
In uncontrolled components, the form element’s state is not managed 

by React but by the DOM itself. This approach utilizes React’s ref to 

directly interact with the DOM elements to retrieve their current values. 

Since React does not maintain the input values in its state, uncontrolled 

components are well suited for scenarios where minimal interaction with 

form data is needed, such as simple, one-time data collection forms. This 

approach also reduces the overhead of state management, making it a 

lightweight option for specific use cases as shown in Listing 11-2.

Listing 11-2.  Uncontrolled Component

const UncontrolledExample = () => {
  const inputRef = React.useRef();

  const handleSubmit = (e) => {
    e.preventDefault();
    alert(`Input value: ${inputRef.current.value}`);
  };

Chapter 11  Form Handling and Validation



206

  return (
    <form onSubmit={handleSubmit}>
      <label>
        Username:
        <input type="text" ref={inputRef} />
      </label>
      <button type="submit">Submit</button>
    </form>
  );
}

This example illustrates how uncontrolled components function by 

using the ref attribute to directly access the value of the DOM element. 

Unlike controlled components, the input’s value is not stored in React’s 

state but is retrieved directly when needed. This approach is simple and 

avoids the need for continuous state updates, making it ideal for forms that 

do not require real-time validation or dynamic behavior. However, it limits 

the flexibility and control provided by React over form inputs.

�Handling User Input
React simplifies the process of managing user input by leveraging event 

handling. Events like onChange, onSubmit, and onClick enable developers 

to create dynamic, interactive forms that respond to user actions. These 

events are an integral part of form handling in React, allowing developers 

to capture and process user input in real time. Understanding how React 

handles events is key to building robust and responsive applications.

React uses a synthetic event system that wraps native DOM events. 

This system provides a consistent interface across different browsers, 

ensuring a seamless developer experience. Event handlers in React are 

written as functions that take an event object as their argument. This 

object contains all the details about the event, such as the target element, 

input value, and event type.

Chapter 11  Form Handling and Validation



207

�OnChange Event
The onChange event is triggered whenever the value of an input element 

changes. This event is commonly used in controlled components to 

update the state with the latest user input as illustrated in Listing 11-3.

Listing 11-3.  Basic Input Handling

const InputExample = () => {
  const [text, setText] = React.useState("");

  const handleChange = (e) => {
    �setText(e.target.value); // Update the state with the 

input's value
  };

  return (
    <form>
      <label>
        Enter Text:
        �<input type="text" value={text} 

onChange={handleChange} />
      </label>
      <p>You typed: {text}</p>
    </form>
  );
}

The onChange event is used to detect changes in the input field, 

allowing developers to handle user input dynamically. In the example, 

the handleChange function is triggered whenever the input value changes. 

This function captures the new value from the event object and updates 

the text state with it. By tying the input’s value attribute to the text state, 

Chapter 11  Form Handling and Validation



208

React ensures that the UI reflects the most recent input in real time. This 

synchronization between the input field and the state makes the form 

responsive and interactive, providing immediate feedback to the user as 

they type.

�OnSubmit Event
The onSubmit event is fired when a form is submitted. React allows 

developers to prevent the default form submission behavior (reloading 

the page) and handle the submission programmatically as shown in 

Listing 11-4.

Listing 11-4.  Handling Form Submission

const FormSubmitExample = () => {
  const [email, setEmail] = React.useState("");

  const handleSubmit = (e) => {
    e.preventDefault(); // Prevent the default form submission
    alert(`Email submitted: ${email}`);
  };

  return (
    <form onSubmit={handleSubmit}>
      <label>
        Email:
        <input
          type="email"
          value={email}
          onChange={(e) => setEmail(e.target.value)}
        />
      </label>

Chapter 11  Form Handling and Validation



209

      <button type="submit">Submit</button>
    </form>
  );
}

The onSubmit event is bound to the <form> element, enabling React 

to handle form submissions programmatically. In the example, the 

handleSubmit function is triggered when the form is submitted. This 

function prevents the browser’s default behavior, such as reloading the 

page, by calling e.preventDefault(). Instead, it processes the form data 

in a controlled manner. Additionally, the input field’s value is dynamically 

managed using the onChange handler, ensuring that the state stays updated 

with the user’s input in real time. This combination allows for a seamless 

and efficient form submission process.

�Combined Event
React enables the combination of multiple events to create complex, 

interactive forms. For example, you can use onBlur to validate input when 

the user leaves a field or onFocus to provide feedback when a user focuses 

on an input as illustrated in Listing 11-5.

Listing 11-5.  Using onBlur and onFocus for Validation and 

Feedback

const BlurFocusValidationExample = () => {
  const [username, setUsername] = React.useState("");
  const [error, setError] = React.useState("");
  const [focusMessage, setFocusMessage] = React.useState("");

  const handleBlur = () => {
    if (username.trim() === "") {
      setError("Username cannot be empty.");

Chapter 11  Form Handling and Validation



210

    } else {
      setError("");
    }
  };

  const handleFocus = () => {
    �setFocusMessage("Enter a valid username (e.g., at least 3 

characters).");
  };

  return (
    <form>
      <label>
        Username:
        <input
          type="text"
          value={username}
          onChange={(e) => setUsername(e.target.value)}
          onBlur={handleBlur}
          onFocus={handleFocus}
        />
      </label>
      �{focusMessage && <p style={{ color: "blue" 

}}>{focusMessage}</p>}
      {error && <p style={{ color: "red" }}>{error}</p>}
    </form>
  );
}

In this example, the onBlur event is used to validate the input when the 

user moves focus away from the input field, displaying an error message if 

the field is empty. Additionally, the onFocus event provides feedback to the 

user when they focus on the input field by displaying a helpful message to 

Chapter 11  Form Handling and Validation



211

guide their input. This approach illustrates how combining multiple events 

can enhance the user experience by simultaneously offering contextual 

feedback and validation.

�Event Object
The event object in React provides detailed information about the 

triggered event, as shown in Listing 11-6, including

•	 target: The element that triggered the event

•	 type: The type of event (e.g., click, change)

•	 preventDefault: A method to prevent the default 

browser behavior

Listing 11-6.  Accessing Event Properties

const EventObjectExample = () => {
  const handleClick = (e) => {
    console.log(`Event Type: ${e.type}`);
    console.log(`Target Value: ${e.target.value}`);
  };

  return (
    <button onClick={handleClick} value="Button Clicked">
      Click Me
    </button>
  );
}

The e.type property provides information about the type of event that 

was triggered, such as a click or change event. Meanwhile, the e.target.
value property retrieves the current value of the element that initiated 

the event, allowing developers to access and utilize the user’s input or 

interaction within the event handler.

Chapter 11  Form Handling and Validation



212

�Form Validation
�Client-Side Validation
Form validation is an essential step in ensuring that user inputs meet the 

required criteria before submission. In React, client-side validation can be 

effectively implemented using state management and simple conditional 

checks as shown in Listing 11-7. By validating inputs on the client side, 

developers can provide immediate feedback to users, improving the 

overall user experience while reducing unnecessary server requests 

caused by invalid submissions.

Validation logic is typically incorporated into onChange, onBlur, 

or onSubmit event handlers. For instance, as users type into a form 

field, you can validate their input in real time and display appropriate 

error messages. Alternatively, you can validate the form only when the 

user attempts to submit it, ensuring that all fields meet the necessary 

requirements.

Listing 11-7.  Basic Validation

const BasicValidation = () => {
  const [username, setUsername] = React.useState("");
  const [error, setError] = React.useState("");

  const validate = () => {
    if (username.length < 3) {
      setError("Username must be at least 3 characters long.");
      return false;
    }
    setError("");
    return true;
  };

Chapter 11  Form Handling and Validation



213

  const handleSubmit = (e) => {
    e.preventDefault();
    if (validate()) {
      alert("Form submitted successfully!");
    }
  };

  return (
    <form onSubmit={handleSubmit}>
      <label>
        Username:
        <input
          type="text"
          value={username}
          onChange={(e) => setUsername(e.target.value)}
        />
      </label>
      {error && <p style={{ color: "red" }}>{error}</p>}
      <button type="submit">Submit</button>
    </form>
  );
}

The handleChange function is responsible for updating the name state 

whenever the user types into the input field, ensuring that the application 

keeps track of the latest input in real time. The handleSubmit function is 

executed when the form is submitted and checks whether the name field 

is empty. If the validation fails, such as when the field is left blank, an 

error message is displayed to the user, and the form submission is halted. 

On the other hand, if the validation passes, the error message is cleared, 

and the form data is successfully processed. This example highlights how 

React’s state management can be effectively leveraged to implement form 

Chapter 11  Form Handling and Validation



214

validation logic. Client-side validation plays a vital role in improving user 

experience by providing immediate feedback and reducing the burden on 

the server by preventing invalid submissions early.

�Real-Time Validation
Real-time validation is a user-friendly feature that provides immediate 

feedback as users type into input fields. By leveraging React’s ability to 

update state dynamically, developers can validate user input and display 

the results in real time, creating a more interactive and engaging user 

experience. This approach helps users correct errors or improve their 

input as they type, reducing the likelihood of invalid form submissions and 

improving overall usability as illustrated in Listing 11-8.

Listing 11-8.  Password Strength Meter

const PasswordStrength = () => {
  const [password, setPassword] = React.useState("");
  const [strength, setStrength] = React.useState("");

  const handleChange = (e) => {
    const value = e.target.value;
    setPassword(value);

    if (value.length < 6) {
      setStrength("Weak");
    } else if (value.length < 10) {
      setStrength("Moderate");
    } else {
      setStrength("Strong");
    }
  };

Chapter 11  Form Handling and Validation



215

  return (
    <form>
      <label>
        Password:
        �<input type="password" value={password} 

onChange={handleChange} />
      </label>
      <p>Strength: {strength}</p>
    </form>
  );
}

The example demonstrates how to implement real-time validation 

using a password strength meter. The handleChange function updates 

the password state whenever the user types into the password field. 

Simultaneously, it evaluates the strength of the entered password based 

on its length and updates the strength state accordingly. If the password 

length is less than six characters, the strength is classified as “Weak.” For 

lengths between six and ten characters, it is classified as “Moderate,” 

and for passwords longer than ten characters, the strength is deemed 

“Strong.”

The feedback is displayed immediately beneath the input field, 

providing users with a clear indication of their password’s strength as they 

type. This real-time feedback not only enhances the user experience but 

also guides users toward creating stronger passwords, ensuring better 

security. Such interactive validation features are increasingly expected in 

modern applications and can be easily implemented using React’s state 

management capabilities. In the next section, we will explore how to 

handle more complex validation requirements using third-party libraries.

Chapter 11  Form Handling and Validation



216

�Using Third-Party Libraries
�Formik
Formik is a powerful library that simplifies form handling and validation in 

React applications. It provides a declarative API that minimizes boilerplate 

code and allows developers to focus on their application logic rather than 

managing form state manually. One of the standout features of Formik 

is its ability to integrate seamlessly with validation libraries like Yup, 

making it easy to enforce validation rules and display error messages. This 

combination provides a structured and efficient way to handle complex 

forms with minimal effort.

In the example below, Formik is used to create a form with an email 

input field. The initialValues prop initializes the form state, setting the 

default value for the email field to an empty string. The onSubmit function 

processes the form data when the user submits the form. Validation 

rules are defined using Yup, which ensures that the email field must 

contain a valid email address and cannot be left empty. Formik’s <Field> 

component automatically binds the input field to the form state, reducing 

the need for explicit onChange handlers. Additionally, the <ErrorMessage> 

component displays validation error messages dynamically, providing 

immediate feedback to the user as shown in Listing 11-9. The 

corresponding output is shown in Figure 11-1.

Listing 11-9.  Formik Integration with Yup

import { Formik, Form, Field, ErrorMessage } from "formik";
import * as Yup from "yup";

const FormikExample = () => {
  const validationSchema = Yup.object({
    �email: Yup.string().email("Invalid email").

required("Required"),
  });

Chapter 11  Form Handling and Validation



217

  return (
    <Formik
      initialValues={{ email: "" }}
      validationSchema={validationSchema}
      onSubmit={(values) => console.log(values)}
    >
      <Form>
        <label>Email:</label>
        <Field type="email" name="email" />
        �<ErrorMessage name="email" component="div" style={{ 

color: "red" }} />
        <button type="submit">Submit</button>
      </Form>
    </Formik>
  );
}
Export default FormikExample;

Figure 11-1.  Formik integration with Yup

In this example, Formik’s declarative approach simplifies form 

management by automatically handling state updates, validation, and 

error display. The validationSchema defined using Yup enforces two key 

rules: the email must be valid, and the field must not be empty. Formik’s 

<Field> component binds the email input to its internal state, while the 

Chapter 11  Form Handling and Validation



218

<ErrorMessage> component displays error messages dynamically if the 

validation fails. When the user submits the form, the onSubmit function 

logs the form values to the console.

This example demonstrates how Formik and Yup work together to 

streamline form handling and validation. By reducing boilerplate code and 

centralizing validation logic, Formik makes it easier to build robust and 

maintainable forms in React applications. This approach not only saves 

development time but also enhances the user experience with real-time 

validation and error feedback.

�React Hook Form
React Hook Form is a lightweight and performant library for managing 

forms in React. Unlike Formik, it leverages uncontrolled components, 

which rely on the DOM to manage form values. This approach reduces 

the need for React state updates, minimizing re-renders and improving 

performance, especially for large or complex forms. React Hook Form is 

highly flexible, providing powerful utilities for validation, error handling, 

and integration with third-party libraries, making it a great choice for 

efficient form handling as shown in Listing 11-10.

Listing 11-10.  Using React Hook Form for Email Validation

import { useForm } from "react-hook-form";

const HookFormExample = () => {
  const {
    register,
    handleSubmit,
    �formState: { errors }, // Correct way to access errors in v7+
  } = useForm();

  const onSubmit = (data) => console.log(data);

Chapter 11  Form Handling and Validation



219

  return (
    �<form onSubmit={handleSubmit(onSubmit)} 

className="hook-form">
      <label>Email:</label>
      <input
        type="email"
        �{...register("email", { required: "Required" })}  

// Updated syntax
      />
      �{errors.email && <p className="error-message">{errors.

email.message}</p>}

      <button type="submit">Submit</button>
    </form>
  );
}

export default HookFormExample;

In the example, the useForm hook provides essential tools such as 

register, handleSubmit, and errors. The register function binds the 

input field to React Hook Form, enabling validation rules to be applied 

directly. Here, the email field is marked as required, and if the user 

attempts to submit the form without providing a value, an error message is 

displayed dynamically. The handleSubmit function wraps the submission 

logic and ensures that validation is performed before the onSubmit 

function is called. This seamless integration of validation and submission 

logic reduces boilerplate code and provides a clean, declarative approach 

to form handling. Additionally, the errors object dynamically tracks 

validation issues, making it easy to provide real-time feedback to users. 

This approach demonstrates how React Hook Form streamlines form 

handling and validation, offering a lightweight and efficient solution for 

managing forms in React applications.

Chapter 11  Form Handling and Validation



220

�Example: Checkout Form
The checkout form is designed to streamline the process of collecting 

customer details while ensuring the data is valid and ready for submission. 

This form will collect the user’s name, email, and shipping address, 

performing both basic and asynchronous validations to provide immediate 

feedback. Once all inputs are validated, the form will handle submission 

by making an API call to store or process the provided information, 

simulating a real-world ecommerce workflow. This example incorporates 

key features of form handling and validation to create a robust and user- 

friendly checkout experience as illustrated in Listing 11-11. The output of 

the checkout form is shown in Figure 11-2.

Listing 11-11.  Checkout Form

import React from "react";
import "./CheckoutForm.css"; // Import external CSS for styling

const CheckoutForm = () => {
  // State to store form data
  const [formData, setFormData] = React.useState({
    name: "",
    email: "",
    address: "",
  });

  // State to store validation errors
  const [errors, setErrors] = React.useState({});

  // Validation function to check required fields
  const validate = () => {
    const newErrors = {};
    �if (!formData.name.trim()) newErrors.name = "Name is 

required";

Chapter 11  Form Handling and Validation



221

    �if (!formData.email.includes("@")) newErrors.email = 
"Invalid email format";

    �if (!formData.address.trim()) newErrors.address = "Address 
is required";

    setErrors(newErrors);

    // Return true if no errors exist
    return Object.keys(newErrors).length === 0;
  };

  // Handles form submission
  const handleSubmit = (e) => {
    e.preventDefault();
    if (validate()) {
      console.log("Form submitted:", formData);
    }
  };

  // Handles changes to input fields and updates state
  const handleChange = (e) => {
    �setFormData({ ...formData, [e.target.name]: e.target.

value });
  };

  return (
    <div className="checkout-container">
      <form onSubmit={handleSubmit} className="checkout-form">
        {/* Name Field */}
        <label>Name:</label>
        <input
          type="text"
          name="name"
          value={formData.name}

Chapter 11  Form Handling and Validation



222

          onChange={handleChange}
          placeholder="Enter your name"
        />
        �{errors.name && <p className="error-message">{errors.

name}</p>}

        {/* Email Field */}
        <label>Email:</label>
        <input
          type="email"
          name="email"
          value={formData.email}
          onChange={handleChange}
          placeholder="Enter your email"
        />
        �{errors.email && <p className="error-message">{errors.

email}</p>}

        {/* Address Field */}
        <label>Address:</label>
        <textarea
          name="address"
          value={formData.address}
          onChange={handleChange}
          placeholder="Enter your address"
        />
        �{errors.address && <p className="error- 

message">{errors.address}</p>}

        {/* Submit Button */}
        <button type="submit">Checkout</button>

Chapter 11  Form Handling and Validation



223

      </form>
    </div>
  );
};

export default CheckoutForm;

Figure 11-2.  Checkout form with form handling and validation

This checkout form demonstrates a comprehensive implementation 

of form handling, validation, and submission in a React application. The 

formData state is used to manage the input values for the name, email, 

and address fields, while the errors state tracks validation messages for 

each field, ensuring users receive immediate feedback when they enter 

invalid or incomplete information. Basic validation is handled through 

the validate function, which checks whether all fields are filled and 

whether the email input follows a valid format using a regular expression. 

Validation errors are displayed dynamically next to the relevant fields 

using conditional rendering, enhancing the user experience.

Chapter 11  Form Handling and Validation



224

The form also incorporates asynchronous validation and submission. 

The handleSubmit function validates the inputs first and prevents 

submission if errors are detected. Once the inputs are validated, the 

function performs an API call to a simulated endpoint (https://api.
example.com/checkout) to process the form data. Upon successful 

submission, a success message is displayed to inform the user. If the 

submission fails, an error message alerts the user of the issue, ensuring 

clear communication at every step. Additionally, the isSubmitting state is 

used to disable the submit button and provide feedback to the user during 

the API call, preventing duplicate submissions and enhancing usability. 

This well-rounded implementation illustrates best practices for handling 

forms in React, combining real-time validation, asynchronous operations, 

and user-friendly feedback.

�Summary
This chapter provided a comprehensive exploration of form handling 

and validation in React, addressing a wide range of techniques and tools 

to manage user input effectively. We began by examining the differences 

between controlled and uncontrolled components, highlighting how 

controlled components rely on React state for input management, while 

uncontrolled components leverage the DOM for simpler use cases. 

Next, we delved into real-time validation techniques that provide instant 

feedback as users type, ensuring a smoother and more interactive user 

experience.

The chapter also covered asynchronous validation and the use of third- 

party libraries such as Formik and React Hook Form. Formik simplifies 

form state management and integrates seamlessly with validation libraries 

like Yup for schema-based validation. React Hook Form, on the other 

hand, utilizes uncontrolled inputs to enhance performance by minimizing 

Chapter 11  Form Handling and Validation

https://api.example.com/checkout
https://api.example.com/checkout


225

re-renders. These libraries were demonstrated through practical examples, 

showcasing how to implement efficient and user-friendly forms in React 

applications.

To solidify these concepts, we built a fully functional checkout 

form app. This example integrated state management, validation, error 

handling, and API calls, demonstrating how to apply these techniques in 

a real-world context. The form incorporated both basic and asynchronous 

validation, offering immediate feedback and ensuring data integrity before 

submission. Together, these examples provided a solid foundation for 

handling forms and validations in modern React applications.

In the next chapter, we will explore routing and navigation, where 

we will learn how to implement dynamic navigation, nested routes, and 

more using React Router, enabling seamless transitions and improved user 

experience in single-page applications.

Chapter 11  Form Handling and Validation



227© Nitesh Upadhyaya 2025 
N. Upadhyaya, Advanced Front-End Development,  
https://doi.org/10.1007/979-8-8688-1318-4_12

CHAPTER 12

Routing and 
Navigation
Routing is one of the most fundamental aspects of single-page 

applications (SPAs) like those built with React. Unlike traditional 

multipage applications, SPAs dynamically update the content of a single 

HTML page based on the URL, eliminating the need for full page reloads. 

This approach creates a smoother and faster user experience. In React, 

routing is achieved using specialized libraries like React Router, which 

provide powerful tools to handle navigation and manage different views 

or pages.

This chapter delves into the key concepts of React Router, the most 

widely used library for implementing routing in React applications. 

We will cover topics such as route definitions, dynamic routing, nested 

routes, protected routes, and programmatic navigation. By the end of this 

chapter, you will have a clear understanding of how to create a structured 

and intuitive navigation flow in your applications. Additionally, we will 

demonstrate how to apply these concepts by implementing routing and 

navigation features in a blog app, enabling users to move seamlessly 

between the app’s pages, such as the home page, blog post page, and the 

dashboard page.

https://doi.org/10.1007/979-8-8688-1318-4_12#DOI


228

�Understanding Routing in SPAs
Routing is a critical feature in single-page applications (SPAs), enabling 

smooth transitions between different views or pages within the same 

application. Unlike traditional multipage applications where navigation 

requires fetching a new page from the server, SPAs handle routing on the client 

side. This means that the URL changes dynamically without requiring a full 

page reload. Instead, React updates the content displayed on the screen based 

on the current URL, making the navigation experience seamless and efficient.

�How SPAs Handle Routing
In SPAs, routing is managed entirely by the front-end application. When 

a user navigates to a different route, the SPA intercepts the request and 

dynamically updates the view without involving the server. For example, 

when a user clicks a link to view a product details page, the application 

updates the content to show the product information while keeping the 

rest of the application, such as the navigation bar, intact. This approach 

provides several key advantages:

	 1.	 Faster Navigation: Since SPAs only update the 

necessary parts of the application, the navigation 

process is much faster compared to traditional 

applications where the entire page is reloaded.

	 2.	 A Smoother User Experience: The lack of full 

page reloads creates a more fluid and responsive 

experience for users, mimicking the feel of a native 

application.

	 3.	 Reduced Server Load: By handling most of the 

rendering on the client side, SPAs minimize the load 

on the server, as fewer requests are made to fetch 

HTML pages.

Chapter 12  Routing and Navigation



229

To facilitate routing in React, developers rely on React Router, the 

most popular and widely used library for handling navigation in React 

applications. React Router offers a declarative approach to defining routes, 

allowing developers to specify which component should be rendered for 

each URL. It efficiently handles dynamic routing by mapping the URL 

to the corresponding component or view, enabling developers to build 

scalable and maintainable applications.

With React Router, you can define nested routes, dynamic 
parameters, protected routes, and more, providing all the tools necessary 

to create a robust navigation system. Its declarative nature and rich feature 

set make it an essential tool for building modern SPAs. In the following 

sections, we will explore these features in detail and demonstrate how to 

implement them in our blog application.

�Setting Up React Router
Setting up React Router is the first step toward enabling routing and 

navigation in your React application. React Router provides a powerful, 

declarative API to define and manage routes, making it an essential tool 

for building single-page applications (SPAs). This section explains how 

to install React Router, configure it in your application, and set up basic 

routing.

To begin, you need to install the react-router-dom package, which 

is specifically designed for web-based React applications. This package 

includes all the necessary components and utilities for client-side routing. 

Refer to Listing 12-1 for the installation command.

Listing 12-1.  Installation Command

npm install react-router-dom

Chapter 12  Routing and Navigation



230

This command adds the React Router library to your project, allowing 

you to use features like BrowserRouter, Routes, and Route for defining 

navigation paths.

Once installed, React Router requires you to wrap your application 

with the BrowserRouter component. This component enables React 

Router to listen to changes in the browser’s URL and render the 

appropriate components dynamically. Refer to Listing 12-2 for an example 

configuration.

Listing 12-2.  Example Configuration

import { BrowserRouter, Routes, Route } from  
"react-router-dom";

function Home() {
  return <h1>Welcome to the Home Page</h1>;
}

function About() {
  return <h1>About Us</h1>;
}

const App = () => {
  return (
    <BrowserRouter>
      <Routes>
        <Route path="/" element={<Home />} />
        <Route path="/about" element={<About />} />
      </Routes>
    </BrowserRouter>
  );
}

export default App;

Chapter 12  Routing and Navigation



231

The BrowserRouter component serves as a high-level wrapper that 

allows React Router to interact with the browser’s history API, ensuring 

the application can properly respond to URL changes. By wrapping the 

application with BrowserRouter, you enable React Router to manage 

navigation and render the appropriate components based on the current 

URL. Within the BrowserRouter, the Routes component acts as a container 

for all defined routes in the application. It replaces the older Switch 

component from earlier versions of React Router and provides a more 

intuitive way to organize and manage routing logic. Each Route defined 

inside the Routes component specifies a path and the corresponding 

component to render.

For instance, navigating to / renders the Home component displaying 

“Welcome to the Home Page.”, while navigating to /about renders the 

About component displaying “About Us.” This declarative approach to 

routing ensures that the structure of the routes is clearly defined directly 

in the JSX, making the logic easy to understand and maintain. React 

Router’s declarative nature not only simplifies the routing process but also 

enhances the readability and scalability of the codebase.

�Core Concepts of React Router
React Router provides a robust and flexible way to manage navigation 

and routing in React applications. Understanding its core concepts is 

essential for creating efficient and user-friendly navigation experiences. 

This section covers the fundamentals, including route matching and 

navigating between pages, highlighting how React Router handles these 

tasks declaratively and programmatically.

Chapter 12  Routing and Navigation



232

�Route Matching
React Router uses route matching to determine which component to 

render based on the current URL in the browser. It compares the URL path 

to the path property of each Route component and renders the associated 

component if a match is found. React Router supports both static and 

dynamic routes, enabling developers to create flexible and scalable 

navigation. Dynamic Routes allow you to handle dynamic segments 

within the URL. These segments are defined using a colon (:), followed by 

a parameter name. For example, refer to Listing 12-3 for a dynamic route.

Listing 12-3.  Dynamic Route

<Route path="/product/:id" element={<ProductDetails />} />

In this example, :id represents a dynamic parameter that can hold any 

value (e.g., /product/1, /product/42). The dynamic value is accessible 

within the ProductDetails component using the useParams hook. Refer to 

Listing 12-4 for an example.

Listing 12-4.  Accessing Dynamic Parameters with useParams

import { useParams } from "react-router-dom";

const ProductDetails = () => {
  const { id } = useParams();
  return <h1>Product ID: {id}</h1>;
}
export default ProductDetails

This approach enables you to create pages that dynamically adapt 

based on the provided URL parameters. For instance, in a product-based 

application, the ProductDetails component can fetch and display data for 

a specific product using the id parameter, providing a highly flexible and 

user-specific navigation experience.

Chapter 12  Routing and Navigation



233

�Navigating Between Pages
Navigation in React Router can be achieved both declaratively and 

programmatically. These methods provide flexibility in designing user 

flows for single-page applications (SPAs).

The <Link> component is used for declarative navigation. It allows 

users to navigate between pages without triggering a full page reload. For 

example, refer to Listing 12-5.

Listing 12-5.  Declarative Navigation with <Link>

<Link to="/about">About</Link>

When users click this link, the URL changes to /about, and React 

Router dynamically renders the About component without refreshing the 

page. This method is simple, efficient, and ideal for navigation elements 

like menus and links.

React Router also supports programmatic navigation using the 

useNavigate hook. This is useful when navigation needs to be triggered 

based on an event, such as a button click or form submission.  

See Listing 12-6 for an example.

Listing 12-6.  Programmatic Navigation with useNavigate

import { useNavigate } from "react-router-dom";
const Home = () => {
  const navigate = useNavigate();
  �return <button onClick={() => navigate("/about")}>Go to 
About</button>;

}
export default Home;

Chapter 12  Routing and Navigation



234

In this example, clicking the button programmatically navigates the 

user to the /about page, rendering the About component. React Router’s 

core concepts of route matching and navigation empower developers to 

create dynamic and interactive single-page applications. The ability to 

define dynamic routes simplifies the handling of parameters within URLs, 

while the flexibility of declarative and programmatic navigation enhances 

user experience. Together, these tools provide a solid foundation for 

building modern React applications with efficient and intuitive navigation. 

In the next section, we will explore advanced routing features such as 

nested routes and protected routes to further enhance your application’s 

navigation logic.

�Nested Routes
Nested routes are a powerful feature in React Router that allow developers 

to structure related views within a parent-child hierarchy. They enable you 

to define routes that are part of a larger section of your application, such 

as a dashboard with multiple subsections. This approach enhances the 

organization and scalability of your application’s routing logic, making it 

easier to manage and navigate between related components.

To define nested routes, you can nest <Route> components within 

a parent route. This creates a hierarchy where child routes are rendered 

as part of the parent component’s structure. For example, refer to 

Listing 12-7.

Listing 12-7.  Dynamic Route

<Route path="/dashboard" element={<Dashboard />}>
  <Route path="analytics" element={<Analytics />} />
  <Route path="settings" element={<Settings />} />
</Route>

Chapter 12  Routing and Navigation



235

In this configuration

•	 Navigating to /dashboard renders the Dashboard 

component.

•	 Navigating to /dashboard/analytics renders the 

Analytics component within the Dashboard layout.

•	 Navigating to /dashboard/settings renders 

the Settings component, also within the 

Dashboard layout.

This setup is ideal for applications with complex structures, such as 

admin panels or user dashboards, where multiple subsections need to be 

displayed within a common parent layout. It enhances the organization 

and scalability of your routing logic by grouping related routes together.

To render these nested routes, the parent component must include 

the <Outlet> component provided by React Router. The <Outlet> acts as 

a placeholder that is replaced by the child route’s component when the 

route matches. See Listing 12-8 for an example.

Listing 12-8.  Rendering Nested Routes with <Outlet>

const Dashboard = () => {
  return (
    <div>
      <h1>Dashboard</h1>
      <Outlet />
    </div>
  );
}

Chapter 12  Routing and Navigation



236

In this example

•	 The Dashboard component always displays the heading 

“Dashboard.”

•	 The <Outlet> dynamically renders the matching 

child component, such as Analytics or Settings, 

depending on the URL.

This approach enables developers to build sophisticated routing 

systems with ease. For example, a dashboard page can display shared 

navigation elements and dynamically load the relevant content for each 

subsection (e.g., analytics, settings) without reloading the page.

�Protected Routes
Protected routes are an essential feature in applications where certain 

pages or sections should only be accessible to authenticated users. For 

instance, in an ecommerce application, user profiles, order histories, or 

admin panels may need to be restricted based on the user’s authentication 

status. React Router allows you to implement such access control 

seamlessly using custom components and conditional rendering.

A protected route acts as a wrapper around the component you want 

to secure. It checks whether the user is authenticated and, based on the 

authentication status, either renders the protected component or redirects 

the user to a login page. Refer to Listing 12-9.

Listing 12-9.  Protected Route Component

const ProtectedRoute = ({ element, isAuthenticated }) => {
  return isAuthenticated ? element : <Navigate to="/login" />;
}

Chapter 12  Routing and Navigation



237

In this component, the isAuthenticated prop acts as a boolean 

indicator to determine whether the user is logged in. If isAuthenticated 

is true, the component passed via the element prop is rendered, granting 

access to the protected content. However, if isAuthenticated is false, 

the user is redirected to the /login page using the Navigate component, 

ensuring that only authenticated users can access the specified route. 

This logic provides a secure and straightforward way to manage protected 

routes in React applications.

You can use the ProtectedRoute component to secure specific routes. 

For instance, to protect a user profile page, refer to Listing 12-10.

Listing 12-10.  Securing a Route with ProtectedRoute

<Route
  path="/profile"
  �element={<ProtectedRoute isAuthenticated={isLoggedIn} 
element={<Profile />} />}

/>

In this example, the /profile route is configured to be accessible 

only if the isLoggedIn value is true. If the user is not authenticated (i.e., 

isLoggedIn is false), any attempt to access the /profile route will 

automatically redirect them to the /login page. This ensures that only 

authorized users can view the profile page, while unauthenticated users 

are directed to log in before gaining access.

�Lazy Loading Routes
Lazy loading is an optimization technique that significantly improves the 

performance of React applications by splitting the application into smaller 

chunks and loading them only when required. This technique is especially 

useful for large applications with many routes, as it prevents users from 

Chapter 12  Routing and Navigation



238

having to download unnecessary components up front. Instead, the browser 

fetches the specific route’s component only when the user navigates to it, 

reducing the initial load time and enhancing the overall user experience.

Lazy loading significantly enhances the performance of an application 

by ensuring that only the components necessary for the current view are 

loaded. In traditional React setups, all components are typically bundled 

together, resulting in larger bundle sizes and slower load times. Lazy 

loading addresses these issues by reducing the initial load time, as only the 

essential components are loaded when the application starts. Additionally, 

it improves performance by fetching other components on demand as 

users navigate through the application, making the loading process more 

efficient. This approach also optimizes resource usage, as unused routes 

and components are not fetched until required, ensuring that resources 

are allocated effectively, and unnecessary data transfer is minimized.

React provides the lazy function to define components that should be 

loaded on demand. When combined with the Suspense component, lazy 

loading becomes seamless experience. Refer to Listing 12-11.

Listing 12-11.  Lazy Loading a Route

import { lazy, Suspense } from "react";

const ProductDetails = lazy(() => import("./ProductDetails"));

const App = () => {
  return (
    <Suspense fallback={<div>Loading...</div>}>
      <Routes>
        �<Route path="/product/:id" 

element={<ProductDetails />} />
      </Routes>
    </Suspense>
  );
}

Chapter 12  Routing and Navigation



239

The lazy function dynamically imports the specified component, 

allowing it to be loaded only when needed. In this example, the 

ProductDetails component is imported dynamically when the user 

navigates to the /product/:id route. This approach reduces the size of 

the initial JavaScript bundle, improving the application’s performance. 

The Suspense component acts as a fallback mechanism for lazy-loaded 

components. While the ProductDetails component is being fetched, the 

content specified in the fallback prop, such as <div>Loading...</div>, 

is displayed to the user. Once the component is fully loaded, it replaces the 

fallback content seamlessly. Additionally, the lazy-loaded ProductDetails 

component is integrated into the routing structure using the element 

property of the Route component, ensuring that the routing logic remains 

clear and easy to manage. This combination of lazy, Suspense, and React 

Router ensures efficient and user-friendly dynamic loading of routes.

�Error Handling
Error handling is an essential aspect of building robust web applications. 

React Router provides built-in mechanisms to handle errors such as 

unmatched routes and lazy loading failures. By incorporating error 

handling, you ensure that your application gracefully manages unexpected 

scenarios and provides users with clear feedback when something 

goes wrong.

A common use case for error handling in React Router is defining a 

fallback route for unmatched paths. When users navigate to a route that 

doesn’t exist in your application, you can display a custom 404 page to 

inform them that the requested page could not be found. This is achieved 

using the wildcard route (*), which acts as a catch-all for any undefined 

paths. Refer to Listing 12-12.

Chapter 12  Routing and Navigation



240

Listing 12-12.  Defining a 404 Page

import { BrowserRouter, Routes, Route } from "react- 
router-dom";

const NotFound = () => {
  return <h1>404 - Page Not Found</h1>;
}

const App = () => {
  return (
    <BrowserRouter>
      <Routes>
        <Route path="/" element={<h1>Home Page</h1>} />
        <Route path="/about" element={<h1>About Page</h1>} />
        <Route path="*" element={<NotFound />} />
      </Routes>
    </BrowserRouter>
  );
}

export default App;

The wildcard route, defined with path="*", matches any URL that 

does not correspond to the previously defined routes in your application. 

It is typically placed at the end of the Routes component to serve as a 

fallback for unmatched paths. The NotFound component is used to display 

a custom 404 page, which can include a message or design to inform users 

that the requested page is not available. This component can also include 

helpful navigation links to guide users back to the home page or other valid 

sections of the site. By integrating the wildcard route, your application 

gracefully handles all unmatched paths, ensuring a seamless and user- 

friendly experience for your audience.

Chapter 12  Routing and Navigation



241

In addition to handling unmatched routes, React provides the 

Suspense component for managing errors during lazy loading. For 

instance, if a component fails to load due to a network issue, the Suspense 

component can display a fallback message or implement retry logic as 

discussed in the “Lazy Loading Route” section.

By incorporating a well-designed 404 page for unmatched routes and 

managing errors effectively in lazy-loaded components, your application 

can gracefully handle unexpected scenarios while maintaining a polished 

and professional appearance.

�Example: Simple Blog Navigation 
with React Router
To bring together all the concepts discussed in this chapter, we will 

implement a practical example of a blog application. This app 

will demonstrate routing and navigation using React Router while 

incorporating advanced concepts like dynamic routes, lazy loading, 

protected routes, and error handling. The application will include several 

key pages: a home page (/), a blog post details page (/blog/:id), a 

protected dashboard page (/dashboard) for authenticated users, and a 

404 error page for unmatched routes.

The application’s routing structure integrates lazy loading, route 

protection, and error handling. See Listing 12-13 for an overview.

Listing 12-13.  Defining Routes

//BlogApp.js
import React, { lazy, Suspense } from "react";
import { Routes, Route, Navigate } from "react-router-dom";

const HomePage = lazy(() => import("./Home"));
const BlogPost = lazy(() => import("./BlogPost"));

Chapter 12  Routing and Navigation



242

const Dashboard = lazy(() => import("./Dashboard"));
const NotFound = lazy(() => import("./NotFound"));

function ProtectedRoute({ element, isAuthenticated }) {
  �return isAuthenticated ? element : <Navigate to=".." />;  
// Navigate back

}

const BlogApp = () => {
  const isAuthenticated = false; // Simulated 
authentication status

  return (
    <Suspense fallback={<div>Loading...</div>}>
      <Routes>
        �<Route path="/" element={<HomePage />} /> {/* Matches  

/example/17 */}
        �<Route path="blog/:id" element={<BlogPost />} />  

{/* Matches /example/17/blog/:id */}
        �<Route path="dashboard" element={<ProtectedRoute  

isAuthenticated={isAuthenticated} element={<Dashboard />}  
/>} /> {/* Matches /example/17/dashboard */}

        �<Route path="*" element={<NotFound />} /> {/* Matches  
/example/17/* */}

      </Routes>
    </Suspense>
  );
};

export default BlogApp;

Chapter 12  Routing and Navigation



243

�Page Implementations

	 1.	 Home Page: Displays a list of products with links to 

individual product details. See Listing 12-14.

Listing 12-14.  Home Page Implementation

import React from "react";
import { Link } from "react-router-dom";

const Home = () => {
  const posts = [
    { id: 1, title: "Understanding React Hooks" },
    �{ id: 2, title: "Introduction to JavaScript ES6 

Features" },
  ];

  return (
    <div>
      <h1>Welcome to My Blog</h1>
      <ul>
        {posts.map((post) => (
          <li key={post.id}>
            �<Link to={`blog/${post.id}`}>{post.title}</Link> 

{/* Relative path */}
          </li>
        ))}
      </ul>
    </div>
  );
};

export default Home;

Chapter 12  Routing and Navigation



244

	 2.	 Blog Post Page: Displays product-specific 

information using dynamic routing. See Listing 12-15.

Listing 12-15.  Blog Post Page Implementation

import { useParams } from "react-router-dom";

const BlogPost = () => {
  const { id } = useParams();
  return <h1>Blog Post Content for ID: {id}</h1>;
}

export default BlogPost;

	 3.	 Protected Dashboard Page: A protected route 

accessible only to authenticated users. See 

Listing 12-16.

Listing 12-16.  Dashboard Page Implementation

const Dashboard = () => {
  �return <h1>Dashboard: Only Accessible to Logged-in 
Users</h1>;

}

export default Dashboard;

	 4.	 404 Page: Handles unmatched routes with a custom 

message. See Listing 12-17.

Listing 12-17.  404 Page Implementation

const NotFound = () => {
  return <h1>404 - Page Not Found</h1>;
}

export default NotFound;

Chapter 12  Routing and Navigation



245

Figure 12-1.  Blog application using React Router

The blog app includes several advanced features that demonstrate 

the effective use of React Router. The /dashboard route is protected using 

the ProtectedRoute component, ensuring that only authenticated users 

can access it, thereby safeguarding restricted sections of the application. 

All pages are lazy loaded using React’s lazy and Suspense functions, 

optimizing performance by loading only the necessary components when 

needed. The /blog/:id route showcases dynamic routing, leveraging route 

parameters to fetch and display blog-specific content dynamically. For 

error handling, a wildcard route (*) is implemented to handle unmatched 

paths gracefully, redirecting users to the custom NotFound page.

The app’s flow is designed to provide a seamless user experience. 

Users can navigate to / to view the home page, which displays a list of blog 

posts. Clicking a blog post directs them to the /blog/:id page, where they 

can see the details of the selected article. The /dashboard page, accessible 

only to authenticated users, provides a protected view for managing 

content. Additionally, entering an invalid URL redirects users to the 404 
page, ensuring that all paths are handled appropriately. This complete 

flow demonstrates a practical implementation of React Router’s features 

in a real-world blogging application.

Chapter 12  Routing and Navigation



246

�Summary
Routing and navigation are fundamental aspects of creating seamless and 

user-friendly single-page applications (SPAs). In this chapter, we delved 

into the essential features of React Router, including dynamic routing, 

nested routes, lazy loading, protected routes, and error handling. Each 

concept was explained with practical examples and integrated into a blog 

application to demonstrate their real-world usage.

Dynamic routing enabled the application to fetch and display data 

based on route parameters, while nested routes allowed the structuring 

of related views within a parent-child hierarchy. Lazy loading improved 

performance by splitting the application into smaller chunks and loading 

routes only when necessary. Protected routes ensured that sensitive 

sections of the application, such as the dashboard page, were accessible 

only to authenticated users. Error handling, implemented via a custom 404 

page, provided a user-friendly way to manage unmatched paths.

These routing principles were consolidated in the blog app, where 

users could navigate between the home, blog post, and dashboard 

pages. By combining all the discussed concepts, the app delivered a 

smooth navigation experience and demonstrated the scalability of 

React Router’s features. As we move to the next chapter, we will focus on 

optimizing performance, a crucial step in enhancing the efficiency and 

responsiveness of our React applications.

Chapter 12  Routing and Navigation



247© Nitesh Upadhyaya 2025 
N. Upadhyaya, Advanced Front-End Development,  
https://doi.org/10.1007/979-8-8688-1318-4_13

CHAPTER 13

Optimizing 
Performance
Performance optimization is a critical aspect of modern web application 

development, especially as applications grow in complexity and scale. 

In React, delivering a smooth and responsive user experience involves 

addressing challenges like reducing unnecessary re-renders, optimizing 

state and prop management, and minimizing the app’s bundle size. Poorly 

optimized applications can lead to sluggish performance, impacting user 

satisfaction and retention.

This chapter delves into best practices and techniques for optimizing 

React applications. We will explore concepts like memoization to prevent 

redundant computations, lazy loading to improve initial load times, and 

effective use of developer tools like React Profiler. Each technique will be 

illustrated with practical examples, ensuring you can apply these strategies 

to real-world scenarios.

�Understanding React’s Rendering Behavior
React uses a virtual DOM as an abstraction layer to optimize updates to the 

real DOM. The virtual DOM keeps a lightweight in-memory representation 

of the actual DOM and applies a process called “reconciliation” 

to determine the minimal set of changes needed to update the real 

https://doi.org/10.1007/979-8-8688-1318-4_13#DOI


248

DOM. When the state or props of a component change, React compares 

the current virtual DOM with the previous version to identify differences, 

known as the “diffing” process. Only the nodes that have changed are 

updated in the real DOM, significantly improving efficiency.

However, unnecessary renders can occur if React re-renders 

components that have not experienced any meaningful changes. This 

can lead to wasted computational resources and slower application 

performance. For example, if a parent component re-renders 

unnecessarily, all its child components will also re-render, even if their 

props or state have not changed. Understanding and controlling React’s 

rendering behavior is critical to improving performance.

Performance bottlenecks in React applications often manifest 

as laggy interactions, slow page transitions, or high CPU and memory 

usage. These issues can degrade user experience, especially in large-scale 

applications.

�Symptoms of Bottlenecks

•	 Laggy Interactions: Clicking buttons, typing into 

inputs, or other UI interactions feel delayed or 

unresponsive.

•	 Slow Page Transitions: Navigation between views or 

pages takes noticeably longer.

•	 High CPU or Memory Usage: The application 

consumes excessive resources, impacting performance 

on less powerful devices.

Chapter 13  Optimizing Performance



249

�Tools for Identifying Bottlenecks

•	 React Developer Tools: This browser extension 

provides insights into React components, their props, 

state, and rendering behavior. It allows you to visualize 

component hierarchies and detect components that 

are rendering more frequently than necessary.

•	 Chrome DevTools Profiler: This tool enables you to 

record the performance of your application and analyze 

rendering timelines. It can pinpoint components or 

operations consuming excessive resources.

By combining these tools, you can systematically identify and address 

performance bottlenecks in your application.

�Preventing Unnecessary Re-renders
Unnecessary re-renders in React can lead to performance bottlenecks, 

especially in components that handle large datasets or complex UI 

structures. To mitigate this, React provides tools like React.memo, 

useCallback, and useMemo to optimize rendering behavior.

�React.memo
React.memo is a higher-order component (HOC) that prevents a functional 

component from re-rendering if its props have not changed. It works 

by memoizing the rendered output of the component and reusing it for 

subsequent renders, provided the props remain unchanged as shown in 

Listing 13-1.

Chapter 13  Optimizing Performance



250

Listing 13-1.  Memoizing a Functional Component

const ProductCard = React.memo(({ product }) => {
  console.log("Rendering ProductCard");
  return <div>{product.name}</div>;
});

const ProductList = ({ products }) => {
  return (
    <div>
      {products.map((product) => (
        <ProductCard key={product.id} product={product} />
      ))}
    </div>
  );
}

In this example, the ProductCard component is wrapped with React.
memo. This ensures that it re-renders only when the product prop changes. 

For instance, if the products array remains the same between renders, 

ProductCard will not re-render unnecessarily.

React.memo should be used when dealing with components that 

have stable props, meaning they render the same output for the same 

input values. This optimization is particularly beneficial for preventing 

unnecessary re-renders, thereby improving performance. However, 

React.memo should be applied selectively, especially to components with 

significant rendering costs, as overusing it may introduce unnecessary 

complexity without providing substantial benefits.

�useCallback and useMemo
React’s useCallback and useMemo hooks provide finer control over 

memoization in functional components. The useCallback hook is used 

to memoize callback functions, preventing their unnecessary re-creation 

Chapter 13  Optimizing Performance



251

and improving performance in components that rely on stable function 

references. On the other hand, the useMemo hook is designed to memoize 

computed values, helping to avoid expensive recalculations by caching 

the result of a computation unless its dependencies change. These hooks 

enhance efficiency by reducing redundant processing and optimizing 

rendering performance in React applications as illustrated in Listing 13-2.

Listing 13-2.  Memoizing Callback Functions Using useCallback and 

Memoizing Computer Values Using useMemo

// useCallback
const ProductList = ({ products }) => {
  const renderProduct = useCallback(
    �(product) => <ProductCard key={product.id} 

product={product} />,
    []
  );

  return <div>{products.map(renderProduct)}</div>;
};

// useMemo
const ExpensiveCalculationComponent = ({ items }) => {
  const totalValue = useMemo(() => {
    console.log("Computing total value...");
    return items.reduce((sum, item) => sum + item.price, 0);
  }, [items]);

  return <div>Total: ${totalValue}</div>;
};

In this example, the useCallback hook memoizes the renderProduct 

function, ensuring it is not recreated on every render unless the products 

array changes. This reduces the computational overhead, particularly 

Chapter 13  Optimizing Performance



252

when passing callback functions to child components, and in the other 

case, useMemo ensures that the total value is only recomputed when items 

change, avoiding unnecessary recalculations and improving performance.

By combining React.memo, useCallback, and useMemo, you can 

effectively prevent unnecessary re-renders in your React application. 

However, overusing these tools can lead to increased code complexity 

and even degrade performance in some scenarios. It’s important to profile 

your application using tools like React Developer Tools and apply these 

optimizations judiciously to achieve the best results.

�Code Splitting and Lazy Loading
Code splitting and lazy loading are essential techniques for improving 

React application performance by reducing the initial load time. Instead 

of downloading the entire application up front, these strategies break large 

JavaScript bundles into smaller, manageable chunks that are loaded only 

when needed.

This approach mitigates the performance impact of large JavaScript 

files, ensuring that only the necessary components are fetched 

dynamically. As a result, the application becomes more responsive, 

enhances user experience, and efficiently utilizes resources.

React supports code splitting using dynamic import() statements. 

This functionality enables developers to load components or modules 

on demand, seamlessly integrating with routing and other features. The 

React.lazy function simplifies the process by allowing components to 

be dynamically loaded and rendered only when they are needed. The 

example in Listing 13-3 demonstrates how to implement lazy loading and 

code splitting for a product details page.

Chapter 13  Optimizing Performance



253

Listing 13-3.  Implementing Lazy Loading with React Router

import { lazy, Suspense } from "react";
// Lazy-loaded component
const ProductDetails = lazy(() => import("./ProductDetails"));
const App = () => {
  return (
    <Suspense fallback={<div>Loading...</div>}>
      <Routes>
{/* Route with lazy-loaded component */}
<Route path="/product/:id" element={<ProductDetails />} />
      </Routes>
    </Suspense>
  );
}

In Listing 13-3, the lazy function dynamically imports the 

ProductDetails component. This ensures that the component is loaded 

only when the user navigates to the /product/:id route. The Suspense 

component provides a fallback UI (in this case, a Loading... message) 

while the dynamically imported component is being fetched. Once the 

component is loaded, it replaces the fallback content seamlessly.

By incorporating code splitting and lazy loading into your React 

application, you can significantly enhance its performance. These 

techniques reduce the amount of JavaScript required at the initial load and 

improve the user experience, especially for large-scale applications with 

multiple routes and components. The approach illustrated is a cornerstone 

of modern performance optimization in React applications.

Chapter 13  Optimizing Performance



254

�Optimizing State Management
Efficient state management is essential to ensure that your React 

applications remain performant and scalable as they grow. Poorly 

designed state structures can lead to unnecessary re-renders, deeply 

nested state dependencies, and hard-to-maintain code. This section 

explores techniques to optimize state management using both local state 

and global state libraries like Redux.

�Avoiding Deeply Nested State
Deeply nested state structures can introduce unnecessary complexity 

and lead to performance issues due to frequent re-renders triggered by 

small updates. Keeping state as flat as possible and localizing it where 

appropriate can improve performance and maintainability. For example:

•	 Local State: When a state is only relevant to a specific 

component, use useState or useReducer to manage it 

locally instead of elevating it unnecessarily.

•	 Context API: Avoid overusing React’s Context API 

for frequently changing data, as it can propagate 

re-renders across the component tree. Reserve it for 

static or rarely changing values, such as themes or 

localization settings.

�Using Selectors in Redux
Selectors are a powerful way to optimize state management in Redux. 

By using libraries like reselect, you can memoize derived state and avoid 

recalculating values unnecessarily. This is particularly useful when you 

need to compute expensive operations or extract portions of the state tree. 

Listing 13-4 shows the illustration.

Chapter 13  Optimizing Performance



255

Listing 13-4.  Memoizing State Using Selectors

import { useSelector } from "react-redux";
import { createSelector } from "reselect";

// Base selector to get cart items
const selectCartItems = (state) => state.cart.items;

// Memoized selector to calculate total price
const selectTotalPrice = createSelector(
  [selectCartItems],
  (items) => items.reduce((total, item) => total + item.price, 0)
);

// Usage in a component
const CartSummary = () => {
  const totalPrice = useSelector(selectTotalPrice);
  return <h1>Total Price: ${totalPrice}</h1>;
};

export default CartSummary;

In this example, selectCartItems retrieves the raw cart items from the 

Redux state, while selectTotalPrice uses createSelector to memoize 

the derived total price. This ensures that the total price is only recalculated 

when the cart items change, preventing unnecessary computations and 

re-renders.

�Optimizing Large Lists
Handling large datasets efficiently is crucial for maintaining a smooth 

user experience in React applications. Rendering large lists without 

optimization can result in performance bottlenecks, such as slow 

Chapter 13  Optimizing Performance



256

rendering, high memory usage, and degraded user interactions. 

Virtualization is a powerful technique for improving the performance of 

applications that need to display extensive lists.

�Virtualization
Virtualization involves rendering only the visible portion of a list while 

keeping the rest of the items hidden until they come into view. This 

drastically reduces the number of DOM nodes created and manipulated, 

which in turn enhances the application’s performance. React libraries 

like react-window and react-virtualized provide robust solutions for 

implementing virtualization in React applications.

Listing 13-5.  Efficient List Rendering Using Virtualization

import { FixedSizeList } from "react-window";

const Row = ({ index, style, data }) => (
  <div style={style}>{data[index].name}</div>
);

const ProductList = ({ products }) => (
  <FixedSizeList
    height={400} // Height of the container
    width={300}  // Width of the container
    itemCount={products.length} // Total items in the list
    itemSize={35} // Height of each item in the list
    itemData={products} // Pass products as data
  >
    {Row}
  </FixedSizeList>
);

export default ProductList;

Chapter 13  Optimizing Performance



257

In this example, the FixedSizeList component from react-window 

is utilized to create a scrollable list efficiently, as shown in Listing 13-5. 

The height and width properties define the visible dimensions of the 

list container, ensuring that only a portion of the list is rendered at any 

given time. The itemCount property specifies the total number of items 

in the dataset, while the itemSize property determines the height of 

each individual list item. To render visible items dynamically, a function 

is passed as a child to the FixedSizeList component. This function 

leverages the style prop to position each rendered item correctly within 

the container, ensuring smooth scrolling and optimal performance.

�Optimizing Images and Media
Optimizing images and media is crucial for enhancing the performance of 

web applications, as media files often contribute significantly to the total 

page size. Proper optimization ensures faster load times and a better user 

experience, especially on slower networks.

�Lazy Loading Images
Lazy loading is an effective technique for deferring the loading of images 

until they are needed, such as when they come into the user’s viewport. 

This reduces the initial load time by only loading visible media and 

fetching other assets on demand. In HTML, this can be achieved using the 

loading="lazy" attribute, as shown in Listing 13-6.

Listing 13-6.  Lazy Loading an Image

<img src="example.jpg" loading="lazy" alt="Example" />

Chapter 13  Optimizing Performance



258

In this example, the loading="lazy" attribute instructs the browser to 

delay loading the image until it becomes visible, thereby saving bandwidth 

and improving the time-to-interactive metric.

�Responsive Images
To optimize images for different devices and screen sizes, developers can 

use the <picture> element. This allows the browser to select the most 

appropriate image based on the user’s device resolution and screen size. 

Consider Listing 13-7, which demonstrates this approach.

Listing 13-7.  Responsive Image Setup

<picture>
  <source srcSet="image-large.jpg" media="(min-width: 1024px)" />
  <img src="image-small.jpg" alt="Example" />
</picture>

In this example, the <picture> element specifies a large image for 

devices with a screen width of at least 1024 pixels and a smaller image 

as a fallback for other devices. This setup ensures that users with larger 

screens receive higher-resolution images, while smaller devices conserve 

bandwidth by loading appropriately scaled-down versions.

By combining lazy loading and responsive design techniques, 

developers can significantly enhance the performance and usability of 

their applications. These practices not only improve load times but also 

contribute to a more polished and professional user experience across 

diverse devices and network conditions.

Chapter 13  Optimizing Performance



259

�Network Performance
Optimizing network performance is essential to creating fast and 

responsive web applications. One way to achieve this is by implementing 

efficient data fetching and caching mechanisms. React Query is a 

powerful library that simplifies data management, allowing developers 

to fetch, cache, and synchronize server state in React applications with 

minimal effort.

�Caching with React Query
React Query handles data fetching and caching seamlessly, reducing 

redundant API calls and improving the application’s responsiveness. 

It automatically updates the cache when the underlying data changes, 

ensuring that users always see the latest information without unnecessary 

network requests. The example in Listing 13-8 illustrates the basic usage of 

React Query for data fetching and caching.

Listing 13-8.  Fetching and Caching with React Query

import { useQuery } from "react-query";

const fetchProducts = async () => {
  const res = await fetch("/api/products");
  if (!res.ok) {
    throw new Error("Failed to fetch products");
  }
  return res.json();
};

const ProductList = () => {
  �const { data, isLoading, isError, error } = 
useQuery("products", fetchProducts);

Chapter 13  Optimizing Performance



260

  if (isLoading) return <div>Loading...</div>;
  if (isError) return <div>Error: {error.message}</div>;

  return (
    <div>
      �{(data ?? []).map((product) => ( <div key={product.

id}>{product.name}</div> ))}
    </div>
  );
}
export default ProductList;

In this example, the useQuery hook is used to fetch and cache the 

product data from the /api/products endpoint. The fetchProducts 

function defines the asynchronous fetch operation, ensuring error 

handling by checking res.ok and throwing an error if the request fails. The 

useQuery hook not only handles the request and manages caching but also 

provides isLoading and isError flags to manage different UI states. This 

ensures that users see a loading indicator while the data is being fetched 

and an appropriate error message if the request fails. Additionally, the 

data ?? [] fallback ensures that the application does not crash due to an 

unexpected response format.

React Query’s caching mechanism significantly enhances network 

performance by storing API results and serving cached data when the 

same request is made, thereby reducing latency and bandwidth usage. 

It also supports advanced features such as automatic retries for failed 

requests, background refetching to keep data fresh, pagination, and 

infinite scrolling. These features make React Query a powerful and 

versatile choice for managing server state in modern React applications.

Chapter 13  Optimizing Performance



261

�Prefetching Data
Prefetching data is an advanced technique that further optimizes network 

performance by proactively fetching data before it is needed. This 

approach reduces latency and ensures smoother navigation, particularly 

in scenarios where users are likely to visit specific pages or interact with 

certain components. By preloading data in the background, you can 

significantly enhance the user experience by minimizing wait times for 

critical information.

React Query’s useQueryClient hook provides a prefetchQuery 

method, enabling developers to fetch and cache data ahead of time. 

This can be particularly useful for scenarios where user actions, such as 

hovering over a link or button, indicate an intent to navigate to a specific 

route. The example in Listing 13-9 demonstrates how to implement 

prefetching in a product listing component.

Listing 13-9.  Prefetching Data with React Query

import { useQueryClient } from "react-query";
import { Link } from "react-router-dom";

const fetchProductDetails = async (productId) => {
  const res = await fetch(`/api/product/${productId}`);
  if (!res.ok) {
    throw new Error("Failed to fetch product details");
  }
  return res.json();
};

const ProductList = () => {
  const queryClient = useQueryClient();

Chapter 13  Optimizing Performance



262

  const handleMouseEnter = (productId) => {
    �queryClient.prefetchQuery(["product-details", productId], 

() => fetchProductDetails(productId));
  };

  return (
    <div onMouseEnter={() => handleMouseEnter(1)}>
      <Link to="/product/1">Product 1</Link>
    </div>
  );
};

export default ProductList;

In this example, the useQueryClient hook is used to access the React 

Query client instance. The handleMouseEnter function is triggered when 

the user hovers over the <div> containing the product link. This function 

dynamically calls prefetchQuery, using a unique query key (["product- 
details", productId]) to cache product-specific data. It invokes the 

fetchProductDetails function, which fetches the product details based 

on the given productId.

By storing the fetched data in the cache, the application instantly 
displays preloaded data when the user navigates to the /product/1 

route, reducing network requests and improving performance. This 

optimization is especially useful for faster page transitions and better 
user experience.

�Summary
This chapter delved into the critical aspects of optimizing React applications 

for performance. By understanding React’s rendering behavior and 

employing techniques such as preventing unnecessary re-renders with 

Chapter 13  Optimizing Performance



263

React.memo, useCallback, and useMemo, we explored ways to enhance 

efficiency. The use of advanced features like lazy loading and code 

splitting showcased how to reduce initial load times and improve resource 

utilization. Techniques for managing large datasets with virtualization and 

optimizing state management through libraries like reselect highlighted the 

importance of scalability.

For media, strategies like lazy loading images and leveraging the 

<picture> element for responsive images ensured efficient rendering 

across devices. Network performance was addressed through caching 

data with React Query and prefetching to provide smoother navigation. 

These optimizations were applied holistically in the sample examples, 

demonstrating their practical impact in real-world scenarios. By adhering 

to best practices, such as profiling before optimizing and leveraging 

modern tools, developers can create highly responsive and scalable React 

applications.

The next chapter will focus on ensuring application quality and 

reliability through rigorous testing methodologies and tools tailored for 

React applications.

Chapter 13  Optimizing Performance



265© Nitesh Upadhyaya 2025 
N. Upadhyaya, Advanced Front-End Development,  
https://doi.org/10.1007/979-8-8688-1318-4_14

CHAPTER 14

Testing Your 
Application
Testing is a cornerstone of modern application development, ensuring 

that your React application functions as intended and remains robust as 

it scales. With React’s dynamic nature and modular architecture, testing 

becomes even more critical to maintain reliability, prevent regressions, 

and build confidence in the codebase. This chapter introduces you 

to the core levels of testing—unit, integration, and end to end—while 

providing practical guidance on leveraging powerful tools like Jest, 

React Testing Library, and Cypress to achieve comprehensive coverage. 

Through practical examples, you will gain the expertise needed to create a 

structured and reliable testing suite.

�Why Testing Matters
Testing is not just about finding bugs; it’s about ensuring that your 

application consistently delivers a seamless user experience. One of the 

key advantages of a robust testing strategy is reliability—verifying that your 

app behaves as expected under various conditions. Testing also aids in 

regression prevention, identifying issues that may arise when new changes 

are introduced to the codebase. For developers, a well-tested application 

fosters an improved development workflow, enabling confident 

refactoring and optimization without fear of breaking existing features.

https://doi.org/10.1007/979-8-8688-1318-4_14#DOI


266

�The Testing Pyramid
To structure your testing approach effectively, consider the testing 
pyramid, which emphasizes the importance of balancing different test 

types for optimal results:

	 1.	 Unit Tests (Base): These tests focus on individual 

functions, components, or modules in isolation, 

verifying their behavior in controlled environments. 

Unit tests form the foundation of the pyramid due to 

their simplicity, speed, and ease of maintenance.

	 2.	 Integration Tests: These tests evaluate how 

different components or modules interact with each 

other, ensuring seamless collaboration between 

various parts of the application. Integration tests are 

essential for identifying issues that might not surface 

in isolated unit tests.

	 3.	 End-to-End (E2E) Tests: Positioned at the top of the 

pyramid, these tests simulate real-world scenarios 

from the user’s perspective, covering the entire 

application flow. While more resource-intensive, 

E2E tests are invaluable for validating the overall 

user experience and functionality.

By understanding the testing pyramid and prioritizing different test 

types appropriately, you can achieve a balanced and efficient testing 

strategy for your React applications. In the following sections, we will delve 

deeper into these testing levels, exploring practical tools and techniques to 

implement them effectively.

Chapter 14  Testing Your Application



267

�Setting Up a Testing Environment
Before diving into testing your React applications, it’s essential to set up 

a robust testing environment equipped with the right tools. This involves 

installing and configuring libraries and frameworks that support different 

types of testing. By doing so, you ensure a smooth workflow for writing and 

running tests across all levels—unit, integration, and end to end.

To begin, install the following key tools to cover various testing 

requirements:

	 1.	 Jest: A versatile testing framework designed for 

JavaScript, Jest excels in writing and executing unit 

and integration tests with minimal setup.

	 2.	 React Testing Library: A library specifically for 

testing React components, it encourages writing 

tests focused on user interactions and outcomes 

rather than implementation details.

	 3.	 Cypress: A powerful tool for end-to-end testing, 

Cypress enables developers to simulate user flows 

and verify the application’s behavior in real-world 

scenarios.

Listing 14-1.  Installing Jest, React Testing Library, and Cypress

npm install --save-dev jest @testing-library/react  
@testing-library/jest-dom cypress

The command shown in Listing 14-1 adds Jest, React Testing Library, 

and Cypress as development dependencies, ensuring they do not bloat 

your production build.

Chapter 14  Testing Your Application



268

�Configuring Jest
Most modern React setups, such as those created with Create React App 

or Vite, come with Jest preconfigured, making it easier to get started. 

However, if you’re working on a custom setup, you might need to configure 

Jest manually. To streamline the testing process, you can define a test 

script in your package.json file as follows:

"scripts": {
  "test": "jest"
}

This configuration enables you to run your tests conveniently using the 

npm test command. Jest’s zero-config approach simplifies the process, 

allowing you to focus on writing effective tests rather than worrying about 

configuration.

�Configuring React Testing Library
React Testing Library works seamlessly with Jest. To enhance your testing 

capabilities, install the additional package @testing-library/jest- 
dom, which provides custom matchers like toBeInTheDocument() and 

toHaveTextContent(). Once installed, you can include the following setup 

in your setupTests.js file (if it exists in your project):

import '@testing-library/jest-dom';

This ensures that all your tests can use the custom matchers provided 

by React Testing Library.

Chapter 14  Testing Your Application



269

�Configuring Cypress
For Cypress, some minimal configuration may be required to specify test 

folders and customize behavior. By default, Cypress scans the cypress/

integration folder for test files. You can update the cypress.json 

configuration file for additional settings, like the base URL of your app:

{
  "baseUrl": "http://localhost:3000",
  "viewportWidth": 1280,
  "viewportHeight": 720
}

To run Cypress tests, execute the following command:

npx cypress open

This opens the Cypress test runner, allowing you to select and run your 

end-to-end test cases.

�Unit Testing
Unit testing is a fundamental practice in software development that 

focuses on verifying individual pieces of functionality in isolation. Using 

Jest, a popular JavaScript testing framework, we can create fast and reliable 

tests to ensure that specific functions, utilities, or React components work 

as expected.

Unit tests are designed to validate the smallest testable parts of an 

application, such as utility functions or components. By testing these units 

in isolation, we can catch bugs early in the development process and build 

a robust foundation for our application. Utility functions are common 

candidates for unit testing because they encapsulate reusable logic. Let’s 

look at an example of testing a simple function.

Chapter 14  Testing Your Application



270

Listing 14-2.  Unit Testing a Utility Function with Jest

// utils.jsx
export function add(a, b) {
  return a + b;
}
// utils.test.js
import { add } from './utils';

test('adds two numbers correctly', () => {
  expect(add(2, 3)).toBe(5);
});

In Listing 14-2, the test validates that the add function works as 

intended by checking that the sum of 2 and 3 equals 5. This ensures 

the utility is performing its basic operation correctly. Similarly, react 

components can also be tested to ensure they render the expected output 

based on their props and state. Let’s examine an example.

Listing 14-3.  Unit Testing a React Component Using React 

Testing Library

// Greeting.jsx
const Greeting = ({ name }) => {
  return <h1>Hello, {name}!</h1>;
}

export default Greeting;
// Greeting.test.js
import { render, screen } from '@testing-library/react';
import Greeting from './Greeting';

Chapter 14  Testing Your Application



271

test('renders greeting message', () => {
  render(<Greeting name="John" />);
  expect(screen.getByText('Hello, John!')).toBeInTheDocument();
});

In Listing 14-3, the Greeting component is rendered with the name 

prop set to “John.” The screen.getByText function is used to locate 

the expected text, and the toBeInTheDocument matcher verifies that the 

element containing the greeting message is present in the rendered output.

�Integration Testing
Integration testing ensures that multiple components or modules within 

an application work cohesively. Unlike unit tests, which focus on isolated 

parts of the code, integration tests evaluate the interaction between 

components, helping developers catch issues that arise when modules are 

combined. These tests are particularly valuable for verifying complex user 

flows and state changes in React applications.

In the example in Listing 14-4, the Counter component consists of a 

button that increments a displayed count when clicked.

Listing 14-4.  Integration Test for Counter Component

// Counter.jsx
const Counter = () => {
  const [count, setCount] = React.useState(0);

  return (
    <div>
      <p>Count: {count}</p>
      �<button onClick={() => setCount(count + 

1)}>Increment</button>

Chapter 14  Testing Your Application



272

    </div>
  );
}

export default Counter;

// Counter.test.js

import { render, screen, fireEvent } from '@testing- 
library/react';
import Counter from './Counter';

test('increments count on button click', () => {
  render(<Counter />);
  const button = screen.getByText('Increment');
  fireEvent.click(button);
  expect(screen.getByText('Count: 1')).toBeInTheDocument();
});

In Listing 14-4, the integration test verifies that the Counter component 

behaves as expected when interacting with the button. The render method 

mounts the component in a simulated DOM environment provided by 

React Testing Library. The screen.getByText function identifies the 

“Increment” button, while the fireEvent.click function simulates 

a user clicking the button. After the click event, the test confirms that 

the displayed text updates to “Count: 1” by checking its presence in the 

document using the toBeInTheDocument matcher.

�End-to-End Testing
End-to-end (E2E) testing plays a critical role in ensuring that your 

application behaves as expected under real-world conditions. Unlike unit 

or integration tests, which focus on specific components or interactions, 

Chapter 14  Testing Your Application



273

E2E tests simulate complete user workflows, including navigation, 

interactions, and data flows. These tests validate the application’s overall 

functionality and user experience.

E2E tests simulate real-world scenarios from the perspective of the 

user, ensuring that the entire application, from front end to back end, 

functions correctly. For example, E2E tests can verify that a user can log 

in, browse products, add items to a cart, and complete a checkout process 

without encountering errors.

Cypress is a popular tool for E2E testing in modern web applications 

due to its robust API and intuitive interface. Setting it up involves the 

following steps:

	 1.	 Install Cypress

Use the following command to add Cypress to your 

project as a development dependency:

npm install --save-dev cypress

	 2.	 Open Cypress

Launch Cypress using the command:

npx cypress open

This opens the Cypress Test Runner, where you can 

manage and execute tests.

	 3.	 Add Test Files

Create test files in the cypress/integration directory. 

For example, you can add a file named navigation.
spec.js for testing navigation.

The example in Listing 14-5 demonstrates how to use Cypress to test 

navigation to a product details page.

Chapter 14  Testing Your Application



274

Listing 14-5.  Cypress Test for Navigation

// cypress/integration/navigation.spec.js

describe('Navigation', () => {
  it('should navigate to the product details page', () => {
    cy.visit('/'); // Visit the home page
    �cy.get('a[href="/product/1"]').click(); // Click the 

product link
    �cy.url().should('include', '/product/1'); // Verify URL 

has changed
    �cy.contains('Product Details').should('be.visible');  

// Confirm the product details page is displayed
  });
});

In Listing 14-5, Cypress simulates a user visiting the home page and 

clicking a link to navigate to a product details page. The cy.visit function 

loads the application, while the cy.get function identifies the anchor tag 

corresponding to the product details page. The cy.url assertion ensures 

that the URL updates as expected, and cy.contains verifies that the target 

page’s content is displayed correctly. This test not only checks navigation 

but also ensures the page content is rendered as expected.

�Snapshot Testing
Snapshot testing is a technique used to ensure that a component’s 

rendered output remains consistent over time. It captures the current 

output of a component and compares it to a previously stored “snapshot.” 

If any changes are detected, the test will fail, alerting developers to review 

and update the snapshot if the changes are intentional.

Chapter 14  Testing Your Application



275

Snapshot testing is particularly useful for

•	 Detecting Unexpected Changes: Prevents unintended 

modifications to a component’s structure or styling

•	 Documenting Components: Provides a clear reference 

for what a component’s output should look like at a 

given state

•	 Quick Validation: Enables developers to test visual 

components without writing extensive assertions

Consider a simple button component that renders a label passed 

via props.

Listing 14-6.  Snapshot Testing a Button Component

// Button.jsx
const Button = ({ label }) => {
  return <button>{label}</button>;
}
export default Button;

// Button.test.js
import React from 'react';
import renderer from 'react-test-renderer';
import Button from './Button';

describe('Button Snapshot Test', () => {
  it('matches the snapshot', () => {
    �const tree = renderer.create(<Button label="Click Me" />).

toJSON();
    expect(tree).toMatchSnapshot();
  });
});

Chapter 14  Testing Your Application



276

In Listing 14-6, the renderer module from the react-test-renderer 

library is used to create a serialized representation of the Button 

component’s output. The toJSON() method converts the rendered output 

into a JSON format suitable for snapshot testing.

�How Snapshot Testing Works

	 1.	 Initial Test Run: During the first test run, Jest 

generates a snapshot file and stores it in a __

snapshots__ directory.

	 2.	 Subsequent Runs: In subsequent runs, the current 

output of the component is compared to the stored 

snapshot.

	 3.	 Pass/Fail Logic

•	 If the output matches the stored snapshot, the 

test passes.

•	 If differences are detected, the test fails, prompting 

the developer to either update the snapshot (if 

changes are intentional) or fix the component.

�Mocking and Stubbing
Mocking and stubbing are critical techniques in testing to isolate 

components and ensure predictable behavior during tests. They enable 

you to simulate dependencies, such as API calls or third-party libraries, 

without relying on real implementations. This is especially useful when 

testing React components that fetch data from external sources or rely on 

complex dependencies.

Chapter 14  Testing Your Application



277

�Mocking API Calls
Mocking API calls prevents the need for actual server interactions during 

tests, making the tests faster, more reliable, and independent of network 

conditions. In this example, the jest-fetch-mock library is used to mock 

the behavior of the fetch API for a React component that retrieves a list of 

products. First, install jest-fetch-mock if not already installed:

npm install --save-dev jest-fetch-mock

Listing 14-7.  Mocking API Calls for a Product List

// ProductList.jsx
import React, { useEffect, useState } from 'react';

const ProductList = () => {
  const [products, setProducts] = useState([]);

  useEffect(() => {
    fetch('/api/products')
      .then((res) => res.json())
      .then((data) => setProducts(data));
  }, []);

  return (
    <div>
      <h1>Product List</h1>
      <ul>
        {products.map((product) => (
          <li key={product.id}>{product.name}</li>
        ))}
      </ul>
    </div>
  );
}

Chapter 14  Testing Your Application



278

export default ProductList;

// ProductList.test.js
import { render, screen, waitFor } from '@testing- 
library/react';
import ProductList from './ProductList';

// Enable fetch mocks
global.fetch = jest.fn();

beforeEach(() => {
  fetch.mockClear();
});

test('displays products fetched from API', async () => {
  fetch.mockResolvedValueOnce({
    json: async () => [{ id: 1, name: 'Product 1' }]
  });

  render(<ProductList />);

  await waitFor(() => {
    expect(screen.getByText('Product 1')).toBeInTheDocument();
  });
});

The explanation of Listing 14-7 highlights the key steps involved 

in mocking an API call within a test. Instead of using fetchMock.
enableMocks(), this example directly mocks fetch using Jest’s built-in 

jest.fn(), eliminating the need for additional dependencies.

To maintain test isolation, fetch.mockClear() is called 

before each test to reset any previous mock data. The fetch.
mockResolvedValueOnce() function is then used to simulate an API call by 

returning a mock JSON response containing a product list.

Chapter 14  Testing Your Application



279

Within the test, the ProductList component is rendered in a 

controlled environment, allowing for validation of its behavior. The 

waitFor function ensures that assertions, such as verifying the presence of 

the product name in the DOM, are executed only after the component has 

completed rendering with the fetched data.

This approach provides a lightweight and easy-to-follow method 
for testing API calls, making it more accessible for beginners while still 

effectively verifying that the ProductList component correctly fetches and 

displays data from the mocked API.

�Summary
Testing is a cornerstone of maintaining high-quality applications, ensuring 

reliability and confidence during development and scaling. In this chapter, we 

explored the three primary levels of testing: unit tests for validating individual 

components or functions, integration tests to verify component interactions, 

and end-to-end (E2E) tests to simulate user flows across the application.

We demonstrated unit testing with Jest and React Testing Library, 

focusing on isolated functionality and rendering. Integration tests 

showcased workflows like counter updates and data interactions, ensuring 

seamless behavior between components. For E2E tests, Cypress was used 

to simulate real-world scenarios such as navigating the product details 

page. Snapshot testing added another layer by capturing component 

outputs for future comparisons, while mocking and stubbing allowed 

testing of API calls without hitting live servers.

Applying these testing strategies ensures it remains robust, reliable, and 

scalable while maintaining a seamless user experience. This comprehensive 

approach to testing not only detects issues early but also streamlines the 

development process by providing confidence in the application’s stability.

The next chapter will focus on securing your React application, 

discussing strategies for handling vulnerabilities, protecting user data, and 

adhering to industry standards for a secure development lifecycle.

Chapter 14  Testing Your Application



281© Nitesh Upadhyaya 2025 
N. Upadhyaya, Advanced Front-End Development,  
https://doi.org/10.1007/979-8-8688-1318-4_15

CHAPTER 15

Security Best 
Practices
In today’s digital landscape, ensuring the security of your web application 

is more than just a best practice—it is a necessity. React applications, 

like any other web apps, are potential targets for various security 

vulnerabilities, and the consequences of neglecting these risks can range 

from data breaches to loss of user trust. Developers must adopt a proactive 

approach to mitigate threats and protect sensitive information.

Common security concerns include Cross-Site Scripting (XSS), where 

attackers inject malicious scripts into your application, and Cross-Site 
Request Forgery (CSRF), which tricks users into performing unintended 

actions. Additionally, insecure API endpoints can become gateways for 

attackers to exploit vulnerabilities. This chapter identifies these risks and 

delves into best practices to mitigate them, empowering you to build 

secure and resilient React applications. By the end of this chapter, you will 

have a comprehensive understanding of how to secure your application 

against modern threats and ensure a safe experience for your users.

https://doi.org/10.1007/979-8-8688-1318-4_15#DOI


282

�Common Security Risks 
in React Applications
Securing a React application requires understanding the common 

vulnerabilities that malicious actors exploit. Below are key security risks 

every developer should be aware of, along with their potential impacts.

�Cross-Site Scripting (XSS)
Cross-Site Scripting (XSS) occurs when attackers inject malicious scripts 

into your application, often through input fields or external data sources. 

These scripts can execute in the user’s browser, bypassing the security 

model of your application.

The consequences of XSS attacks include stealing user data (e.g., 

cookies or session tokens), hijacking user sessions, and potentially 

compromising the user’s device or account. For instance, an attacker 

might embed a malicious script that sends the user’s session token to a 

remote server, allowing unauthorized access to their account.

�Cross-Site Request Forgery (CSRF)
Cross-Site Request Forgery (CSRF) tricks authenticated users into 

performing unintended actions on your application. This often occurs 

when attackers send unauthorized requests using the user’s credentials 

without their knowledge.

CSRF attacks can result in unauthorized transactions, changes to 

account settings, or other actions that exploit the user’s logged-in state. 

For example, a CSRF attack might use the user’s authentication token to 

initiate a bank transfer without their consent.

Chapter 15  Security Best Practices



283

�Sensitive Data Exposure
Sensitive Data Exposure occurs when applications fail to adequately 

protect data such as passwords, API tokens, or personally identifiable 

information (PII). Improper encryption, storing data in plaintext, and 

exposing sensitive information in logs are common causes.

The exposure of sensitive data can lead to identity theft, unauthorized 

access to accounts, and large-scale data breaches. For example, if an 

application stores passwords in plaintext and its database is compromised, 

attackers gain direct access to user accounts.

�Insecure API Endpoints
APIs that lack proper authentication, authorization, or input validation 

are a prime target for attackers. This includes APIs that allow unrestricted 

access to sensitive operations or fail to sanitize input data.

Exploiting insecure API endpoints can enable attackers to manipulate 

back-end systems, access sensitive data, or even take control of your 

application. For instance, an endpoint that doesn’t validate input might 

allow an attacker to inject malicious SQL queries into the database.

By recognizing and addressing these vulnerabilities, you can 

proactively safeguard your application and user data against common 

threats. In the next section, we will explore practical techniques to mitigate 

these risks effectively.

�Securing React Components
Securing your React components is a critical step in safeguarding your 

application from security vulnerabilities like Cross-Site Scripting (XSS). 

This section discusses two essential practices: sanitizing user inputs and 

escaping output, with examples illustrating their implementation.

Chapter 15  Security Best Practices



284

�Sanitizing User Inputs
User inputs are a common entry point for XSS attacks. To prevent attackers 

from injecting malicious scripts, it is crucial to sanitize all user-provided 

data before rendering it in your application. React discourages using 

dangerouslySetInnerHTML due to the inherent risks. If you must use it, 

ensure proper sanitization of the input content. Figure 15-1 illustrates the 

output of the sample example we used to demonstrate the Sanitization 

concept.

Listing 15-1.  Input Sanitization Using DOMPurify

import React from "react";
import DOMPurify from "dompurify";

const SafeComponent = ({ content }) => {
  const sanitizedContent = DOMPurify.sanitize(content);
  �return <div dangerouslySetInnerHTML={{ __html: 
sanitizedContent }} />;

};

const App = () => {
  �const unsafeHTML = `<h1>Hello World</h1><script>alert( 
'XSS Attack!');</script>`;

  return (
    <div>
      <h2>Sanitized Content:</h2>
      <SafeComponent content={unsafeHTML} />
    </div>
  );
};

export default App;

Chapter 15  Security Best Practices



285

Figure 15-1.  Sanitized component content using DOMPurify

In Listing 15-1, the DOMPurify.sanitize function ensures 

that the content prop is sanitized before being injected into 

dangerouslySetInnerHTML, preventing malicious scripts such as embedded 

<script> tags from executing in the browser. By using DOMPurify, we 

add a crucial layer of security when rendering dynamic HTML, allowing 

safe elements while stripping out potentially harmful ones. For example, 

if the content includes <h1>Hello World</h1><script>alert('XSS 
Attack!');</script>, the <h1>Hello World</h1> part will be rendered, 

while the <script>alert('XSS Attack!');</script> part will be 

removed by DOMPurify, preventing any potential XSS attack. This approach 

is essential for mitigating Cross-Site Scripting (XSS) attacks in React 

applications while still allowing controlled HTML rendering.

�Escaping Output
React automatically escapes special characters in dynamic content, 

mitigating the risk of XSS attacks. However, you should still ensure that 

data rendered in your application is trusted and sanitized when necessary. 

Figure 15-2 illustrates the output of the sample example we used to 

demonstrate the escaping output concept.

Chapter 15  Security Best Practices



286

Listing 15-2.  Escaping Output in React

import React from "react";

const SafeOutput = ({ message }) => {
  return <p>{message}</p>;
};

const App = () => {
  return (
    <div>
      <h2>React Escaping Example</h2>
      �<SafeOutput message={"Hello <script>alert('XSS') 

</script>"} />
    </div>
  );
};

export default App;

Figure 15-2.  Escaping React example

Listing 15-2 highlights React’s built-in escaping mechanism, 

ensuring that dynamic content is safely rendered inside a <p> tag. React 

automatically escapes special characters like <, >, and &, preventing 

Chapter 15  Security Best Practices



287

them from being interpreted as HTML or JavaScript. For example, if the 

message prop contains <script>alert('XSS')</script>, React treats it as 

plaintext, displaying it exactly as written without executing the script. This 

built-in security feature mitigates XSS vulnerabilities while allowing safe 

rendering of user-generated content.

By combining input sanitization in Listing 15-1 with React’s escaping 

output in Listing 15-2, you can effectively safeguard your components from 

malicious scripts and ensure that dynamic content is handled securely. In 

the next section, we will delve into securing API communication in React 

applications.

�Authentication and Authorization
Proper implementation of authentication and authorization mechanisms 

is critical for ensuring that only legitimate users can access your 

application and that they are restricted to actions they are authorized to 

perform. This section highlights secure authentication practices and the 

importance of Role-Based Access Control (RBAC).

�Secure Authentication
Authentication is the first line of defense in securing your application. 

Using robust methods like OAuth or JSON Web Tokens (JWT) is highly 

recommended to verify user identity. Additionally, storing sensitive 

information like tokens securely can prevent them from being exploited.

Best Practices for Secure Authentication:

•	 Use HttpOnly cookies to store authentication tokens. 

These cookies are not accessible via JavaScript, 

preventing XSS attacks from exposing sensitive data.

Chapter 15  Security Best Practices



288

•	 Avoid storing tokens in localStorage or 

sessionStorage, as these are more vulnerable to being 

accessed by malicious scripts.

•	 Implement secure session management to protect user 

sessions from hijacking.

Listing 15-3 shows a short example demonstrating authentication 

using HttpOnly cookies.

Listing 15-3.  Implementing Role-Based Access Control

// Login request that sends credentials and stores token 
securely in HttpOnly cookie

fetch("/api/login", {
  method: "POST",
  �credentials: "include", // Ensures cookies are sent with 
the request

  headers: { "Content-Type": "application/json" },
  �body: JSON.stringify({ username: "admin", password: 
"password" }),

});

In Listing 15-3, tokens are handled securely and not exposed to 

potential XSS attacks. Secure authentication mechanisms are critical for 

protecting user data and preventing session hijacking.

�Role-Based Access Control (RBAC)
RBAC is an essential mechanism for restricting access to specific parts 

of your application based on user roles. For instance, administrators 

may have access to management panels, while regular users may 

not. Figure 15-3 shows the output of the sample example we used to 

demonstrate the RBAC implementation.

Chapter 15  Security Best Practices



289

Listing 15-4.  Implementing Role-Based Access Control

// RBACExample.jsx
import React from "react";

// AdminPanel Component
const AdminPanel = ({ user }) => {
  if (!user || user?.role !== "admin") {
    �return <p style={{ color: "red", fontWeight: "bold" 

}}>Access Denied</p>;
  }

  �return <div style={{ padding: "10px", border: "1px solid 
black" }}>

    <h2>Admin Panel</h2>
    <p>Welcome, {user.name}! You have administrator access.</p>
  </div>;
};

// App Component
const App = () => {
  const adminUser = { name: "Alice", role: "admin" };
  const regularUser = { name: "Bob", role: "user" };
  �const guestUser = null; // Handles case where no user is 
logged in

  return (
    �<div style={{ fontFamily: "Arial, sans-serif", padding: 

"20px" }}>
      <h1>Role-Based Access Control (RBAC) Example</h1>

      <h3>Admin User:</h3>
      �<AdminPanel user={adminUser} /> {/* Displays Admin 

Panel */}

Chapter 15  Security Best Practices



290

      <h3>Regular User:</h3>
      �<AdminPanel user={regularUser} /> {/* Displays "Access 

Denied" */}

      <h3>Guest (No User Logged In):</h3>
      �<AdminPanel user={guestUser} /> {/* Also Displays "Access 

Denied" */}
    </div>
  );
};

export default App;

Figure 15-3.  Role-Based Access Control

Chapter 15  Security Best Practices



291

In Listing 15-4, the AdminPanel component verifies the role property 

of the user object to enforce Role-Based Access Control (RBAC). If the 

user is either null, undefined, or does not have the “admin” role, the 

component displays a styled "Access Denied" message in red for better 

visibility. Otherwise, it renders a structured admin panel, welcoming the 

authorized user by name. This approach ensures that unauthorized users 
cannot access sensitive sections of the application while maintaining 

scalability for additional roles and permissions in the future.

By combining secure authentication methods with RBAC in Listings 15-3 

and 15-4, you can protect sensitive data and ensure that users have access 

only to the resources and functionalities appropriate to their roles. In the 

next section, we will explore best practices for securing API communication 

in your React application.

�Securing API Requests
Securing communication between your React application and back- 

end APIs is critical for maintaining the confidentiality and integrity of 

user data. This section outlines best practices for securing API requests, 

including the use of HTTPS, secure token management, and CSRF 

prevention techniques.

�Using HTTPS
HTTPS (HyperText Transfer Protocol Secure) is essential for encrypting 

the data exchanged between the client and the server. It protects sensitive 

information, such as authentication credentials and API responses, from 

being intercepted by attackers. Modern browsers also flag HTTP websites 

as insecure, making HTTPS adoption a crucial security and trust factor for 

your application.

Chapter 15  Security Best Practices



292

�Securing Tokens
Authentication and authorization in web applications often rely on tokens 

such as JSON Web Tokens (JWT). Proper token management ensures 

these credentials remain secure. Some of the best practices for token 

security are listed below:

•	 Short-Lived Tokens: Use tokens with a short expiration 

time to limit the impact of token theft. Combine 

these with secure refresh token mechanisms for 

uninterrupted user sessions.

•	 HttpOnly Cookies: Store tokens in HttpOnly cookies 

to prevent client-side scripts from accessing them, 

thereby mitigating Cross-Site Scripting (XSS) attacks.

•	 Secure Storage: Avoid storing sensitive tokens in 

localStorage or sessionStorage, as these can be 

accessed by malicious scripts.

�Preventing CSRF Attacks
Cross-Site Request Forgery (CSRF) is a vulnerability where attackers trick 

users into executing unwanted actions on a trusted site. Implementing 

CSRF prevention measures helps protect your application from such 

exploits. Best practices for CSRF preventions are listed below:

•	 CSRF Tokens: Generate a unique token for each user 

session and include it in API requests. Validate this 

token on the server side to ensure that the request 

originated from the authenticated user.

•	 Server-Side Validation: Always verify CSRF tokens 

on the server to confirm their authenticity before 

processing requests.

Chapter 15  Security Best Practices



293

�Example: CSRF Token Implementation

•	 Generate a CSRF token on the server and include it in 

the response headers or as a hidden field in forms.

•	 Send the token back with each API request using 

custom headers.

•	 Validate the token server side to ensure it matches the 

one generated for the user.

By implementing these security measures, including HTTPS, token 

best practices, and CSRF protection, you can safeguard API requests 

from common vulnerabilities. These practices are essential for building 

secure and trustworthy React applications that handle sensitive user data 

responsibly.

�Data Protection
Protecting user data is paramount for maintaining trust and compliance 

with data security regulations. This section focuses on two critical 

practices: encrypting sensitive data and masking sensitive information, 

ensuring that data remains secure both in storage and during processing.

�Encryption
Encryption is the process of converting sensitive data into an unreadable 

format that can only be deciphered with the appropriate decryption key. It 

is essential for safeguarding data both in transit (e.g., during API requests) 

and at rest (e.g., stored in databases). The best practices for encryption are 

shown below:

Chapter 15  Security Best Practices



294

	 1.	 In Transit: Use HTTPS to encrypt communication 

between the client and server.

	 2.	 At Rest: Encrypt sensitive data, such as user 

passwords and credit card details, using strong 

encryption algorithms like AES-256 before storing 

them in databases.

	 3.	 Key Management: Securely manage and rotate 

encryption keys to prevent unauthorized access.

�Masking Sensitive Information
Masking sensitive data, such as credit card numbers and Social Security 

Numbers (SSNs), minimizes exposure in user interfaces or logs. This 

ensures that only the necessary parts of the information are visible, 

reducing the risk of accidental data leakage. The example in Listing 15-5 

demonstrates how to mask credit card numbers in a React input field.

Listing 15-5.  Masking Input Fields

const MaskedInput = ({ value = "" }) => {
  �const maskedValue = value.toString().replace( 
/\d(?=\d{4})/g, "*");

  return <input type="text" value={maskedValue} readOnly />;
}

//Example
<MaskedInput value="1234567890" /> // Displays: ******7890
<MaskedInput value="987654321" />  // Displays: *****4321
<MaskedInput value="" />           // Displays: (Empty input)
<MaskedInput value={null} />       // Displays: (Empty input)

Chapter 15  Security Best Practices



295

In Listing 15-5, the replace method, combined with a regular 

expression, is utilized to mask all but the last four digits of the input 

value by replacing them with asterisks (*). Additionally, the readOnly 

attribute ensures that the user cannot alter the masked value, preserving 

its integrity. This approach is particularly effective for securely displaying 

sensitive information, such as credit card numbers, while maintaining 

partial visibility for validation purposes (e.g., “**** **** **** 1234”).

By encrypting sensitive data and masking critical information in 

user interfaces, you significantly reduce the risk of data exposure. These 

practices help maintain user trust and comply with data protection 

standards such as GDPR and PCI DSS.

�Dependency Management
Managing dependencies effectively is crucial for maintaining the security 

of a React application. Keeping dependencies updated ensures that known 

vulnerabilities are patched, reducing the risk of exploitation. Tools like npm 
audit or Snyk can help identify and mitigate security issues in the project’s 

dependencies.

A practical example is the npm audit fix command in Listing 15-6, 

which scans installed dependencies for vulnerabilities and applies fixes 

where possible.

Listing 15-6.  Running npm audit to Fix Security Vulnerabilities

# Check outdated dependencies before fixing security issues
npm outdated

# Scan dependencies for vulnerabilities
npm audit

Chapter 15  Security Best Practices



296

# Automatically apply non-breaking security fixes
npm audit fix

# (Optional) Force fix breaking changes (Use with caution)
npm audit fix --force

While npm audit fix helps patch vulnerabilities, developers should 

carefully review dependency updates, especially when using --force, 

as it might introduce breaking changes. Beyond automated tools, it is 

essential to avoid installing untrusted packages from unreliable sources. 

Before adding a dependency, developers should check the package’s 

reputation on platforms like GitHub and npm by reviewing factors such as 

stars, open issues, and the last update date.

Additionally, inspecting the source code can help identify potential 

security risks, ensuring that the package does not contain vulnerabilities 

or malicious scripts. Keeping dependencies minimal is another crucial 

practice, as reducing the number of third-party libraries decreases the 

overall attack surface. By regularly auditing dependencies, reviewing third- 

party packages, and adhering to best security practices, developers can 

significantly enhance the security posture of their applications.

�Secure Deployment
Securing the deployment of your React application involves measures 

to protect your code and prevent attackers from gaining insights into its 

structure. Minifying and obfuscating the code in your production build 

reduces its readability, making it challenging for attackers to reverse-

engineer and exploit your application. These steps ensure that your deployed 

application is both efficient and less vulnerable to malicious activities.

Additionally, it is critical to disable source maps in production. Source 

maps provide a mapping from the minified code back to the original 

source, which can be invaluable for debugging but poses a significant 

Chapter 15  Security Best Practices



297

security risk if exposed publicly. By disabling source maps during the 

production build, you ensure that attackers cannot easily access your 

application’s source structure.

Listing 15-7.  Disabling Source Maps in Production

REACT_APP_GENERATE_SOURCEMAP=false npm run build

In Listing 15-7, setting the REACT_APP_GENERATE_SOURCEMAP 

environment variable to false prevents the generation of source maps 

during the build process. This practice enhances the overall security of 

your deployment and safeguards sensitive parts of your application.

�Security Testing
Security testing is a crucial step in ensuring the robustness of your 

application against potential vulnerabilities and attacks. This process helps 

uncover security loopholes that could otherwise compromise user data or 

application functionality.

�Static Analysis Tools
Static analysis tools like SonarQube and ESLint (with security plugins) 

can automatically scan your codebase for security vulnerabilities, unused 

variables, and unsafe coding practices. These tools provide actionable 
recommendations to mitigate identified risks early in development.

By integrating static analysis into your CI/CD pipeline, you ensure 

consistent security enforcement across your application. One way to 

achieve this is by using ESLint with eslint-plugin-security, which 

helps detect potential security flaws, such as unsafe object injection.

Chapter 15  Security Best Practices



298

Listing 15-8.  Configuring ESLint for Security Testing

npm install --save-dev eslint eslint-plugin-security

Then, configure ESLint in your .eslintrc.json file:

// .eslintrc.json
{
"extends": ["eslint:recommended", "plugin:security/
recommended"],
  "plugins": ["security"],
  "rules": {
    "security/detect-object-injection": "warn"
  }
}

Run the analysis using

npx eslint ./src

For continuous security enforcement, consider integrating ESLint with 

pre-commit hooks using husky and lint-staged to ensure security checks 

before committing code. This can be set up with the command npx husky- 
init && npm install. Additionally, incorporating CI/CD pipelines 

such as GitHub Actions or Jenkins can help automate ESLint checks 

on every pull request, preventing insecure code from being merged. By 

adopting static analysis tools, automating security checks, and enforcing 

best practices, developers can significantly reduce security risks while 

maintaining high code quality.

�Penetration Testing
Penetration testing involves simulating real-world attacks on your 

application to evaluate its security posture. These tests help uncover 

weaknesses that static analysis tools might miss, such as API endpoint 

Chapter 15  Security Best Practices



299

misconfigurations or improper authentication flows. Regular penetration 

testing by security experts ensures your application can withstand various 

types of attacks, providing users with a secure and trustworthy experience.

�Conducting Penetration Testing

	 1.	 Use security testing tools like OWASP ZAP or Burp 
Suite to scan your application for vulnerabilities.

	 2.	 Simulate common attacks in a controlled testing 
environment:

•	 SQL Injection (SQLi): Attempt to inject SQL 

commands into API endpoints or form inputs to 

check if the back end properly validates queries.

•	 Cross-Site Scripting (XSS): Inject malicious scripts 

into user input fields and observe whether they 

execute in the browser.

•	 Broken Authentication: Test for issues like token 
hijacking, weak session management, and 
improper Role-Based Access Controls (RBAC).

	 3.	 Generate a penetration testing report detailing

•	 Identified vulnerabilities and their severity levels

•	 Recommendations for fixing security gaps

After completing penetration testing, it is crucial to patch 
vulnerabilities and retest to ensure they are properly mitigated. By 

integrating penetration testing into your security strategy, you can 

proactively defend against cyber threats and strengthen the overall 

security of your application.

Chapter 15  Security Best Practices



300

�Summary
This chapter highlighted the critical need for securing React applications 

by providing actionable strategies to mitigate vulnerabilities and build 

secure web applications. It began with an overview of common threats, 

including Cross-Site Scripting (XSS), Cross-Site Request Forgery (CSRF), 

sensitive data exposure, and insecure API endpoints, setting the stage for 

understanding their potential impact.

Key techniques for securing React components were discussed, such 

as input sanitization with DOMPurify and leveraging React’s automatic 

escaping output to prevent malicious scripts. Authentication and 

authorization best practices, like using OAuth or JWT and implementing 

Role-Based Access Control (RBAC), were explained with practical 

examples like protecting admin routes.

The chapter also focused on securing API requests by emphasizing 

HTTPS, secure token management using HttpOnly cookies, and preventing 

CSRF attacks through server-side validation. Data protection measures, 

including encryption and masking sensitive information, were outlined, 

along with examples to demonstrate these concepts in action.

Dependency management was covered, stressing the importance 

of regular updates, vulnerability scans with tools like npm audit, and 

avoiding untrusted packages. Secure deployment practices, such as 

minifying and obfuscating code and disabling source maps in production, 

were provided with clear steps to enhance application security.

Security testing was emphasized as a critical step in the development 

lifecycle, recommending tools like SonarQube and ESLint for static 

analysis and regular penetration testing to simulate and address potential 

vulnerabilities.

By implementing these security measures, developers can safeguard 

user data, build user trust, and ensure compliance with industry standards. 

In the next chapter, we will explore how to make your application inclusive 

for all users and adaptable for global audiences, ensuring it meets the 

needs of diverse populations.

Chapter 15  Security Best Practices



301© Nitesh Upadhyaya 2025 
N. Upadhyaya, Advanced Front-End Development,  
https://doi.org/10.1007/979-8-8688-1318-4_16

CHAPTER 16

Accessibility and 
Internationalization
Modern web applications need to cater to diverse user bases. This 

includes ensuring usability for individuals with disabilities and adapting 

to linguistic and cultural preferences for a global audience. By addressing 

accessibility (A11Y) and internationalization (i18n) in your React 

applications, you enhance user experience, comply with legal standards, 

and broaden your application's reach.

This chapter explores core accessibility principles, such as semantic 

HTML, ARIA attributes, keyboard navigation, and screen reader 

compatibility, ensuring React applications are usable by individuals 

with visual, auditory, motor, or cognitive impairments. It also introduces 

automated testing tools like Axe DevTools, Lighthouse, and jest-axe, which 

help developers identify and fix accessibility issues.

Additionally, the chapter delves into internationalization, covering key 

concepts like language localization, currency formatting, and right-to-left 

(RTL) text support. Using react-i18next and FormatJS, we demonstrate 

how to dynamically switch languages, manage translations, and support 

multilingual user interfaces.

By the end of this chapter, you’ll have the skills and tools to build 

inclusive, accessible, and globally adaptable React applications while 

adhering to modern web development best practices.

https://doi.org/10.1007/979-8-8688-1318-4_16#DOI


302

�Introduction to Accessibility 
and Internationalization
Accessibility ensures that your application is usable by people with visual, 

auditory, motor, or cognitive impairments. It adheres to global standards, 

such as the Web Content Accessibility Guidelines (WCAG), which 

define best practices for creating accessible web applications. Moreover, 

accessibility enhances usability for everyone, including individuals with 

temporary disabilities, such as a broken arm, or situational impairments, 

like bright sunlight affecting screen visibility.

Internationalization enables applications to seamlessly adapt to various 

languages, currencies, and cultural norms without requiring extensive 

redevelopment. It supports localization (L10N), which involves translating 

and formatting content for specific regions or audiences. Additionally, 

internationalization allows applications to tap into global markets by 

creating a user-friendly experience for non-native speakers of the default 

language. Key challenges addressed in this chapter are as follows:

•	 Understanding accessibility standards like WCAG and 

ARIA (Accessible Rich Internet Applications)

•	 Implementing practical solutions for accessible 

navigation, forms, and interactive elements in React

•	 Using tools to test and validate your application’s 

accessibility

•	 Managing multilingual content and regional formatting 

with tools like react-i18next and formatjs

•	 Integrating dynamic language switching without 

compromising performance

By the end of this chapter, you’ll be equipped with practical skills and 

tools to build React applications that are inclusive and adaptable, making 

them accessible to a broader audience while adhering to modern standards.

Chapter 16  Accessibility and Internationalization



303

�Implementing Accessibility in React
Creating accessible React applications requires a thoughtful approach to 

forms, navigation, ARIA attributes, and keyboard interaction. By following 

best practices and leveraging modern tools, developers can ensure their 

applications are inclusive and meet accessibility standards.

One of the foundational steps in making forms accessible is to use 

<label> elements properly. Every input field should have a corresponding 

<label> that is linked via the for attribute to the input’s id. This 

connection allows assistive technologies, like screen readers, to associate 

the label text with the input field. Additionally, focus management 

is crucial, especially for interactive elements like modals or forms. 

Developers can use ref in React or integrate libraries such as react-
focus-lock to ensure the user’s focus is directed to the correct element, 

enhancing usability for keyboard users and those with visual impairments.

Navigation is another critical area where accessibility must be 

prioritized. Semantic HTML elements like <nav> for navigation bars, 

<main> for main content, and <button> for actionable items add 

meaningful structure to the application. These tags inform assistive 

technologies about the purpose of different sections, making it easier for 

users to understand and navigate the content.

ARIA (Accessible Rich Internet Applications) attributes further enhance 

the accessibility of UI elements. For example, adding aria-label or aria-
labelledby can provide additional context to elements, such as buttons or 

links, for screen readers. Similarly, aria-describedby can be used to link 

inputs to help text, offering guidance for users who may need more detailed 

information. For dynamic content, the aria-live attribute ensures that 

updates are announced to users without requiring manual intervention.

Keyboard navigation is an essential aspect of accessibility, particularly 

for users who cannot rely on a mouse. All interactive elements, such as 

buttons, links, and form fields, should be focusable using the tab key. 

Logical tab order ensures that users can navigate the interface intuitively, 

Chapter 16  Accessibility and Internationalization



304

while custom widgets like drop-downs or modals should include keyboard 

handlers to support interactions with keys such as Enter, Escape, and 

arrow keys. Listing 16-1 shows an example of an accessible form that 

implements these practices, and Figure 16-1 shows the rendered output.

Listing 16-1.  Accessible Form Example

import React, { useRef, useEffect, useState } from "react";
import FocusLock from "react-focus-lock";
import "./AccessibleForm.css"; // Import styles

function AccessibleForm() {
  const [error, setError] = useState("");
  const firstInputRef = useRef(null);

  useEffect(() => {
    if (firstInputRef.current) {
      firstInputRef.current.focus();
    }
  }, []);

  const handleSubmit = (e) => {
    e.preventDefault();
    setError("Invalid username or password.");
  };

  const handleKeyDown = (e) => {
    if (e.key === "Escape") {
      setError(""); // Clear error message on Escape key
    }
  };

  return (
    <FocusLock>
      <div className="form-container">

Chapter 16  Accessibility and Internationalization



305

        �<form onSubmit={handleSubmit} aria-
labelledby="formTitle">

          <h2 id="formTitle">Login Form</h2>

          <label htmlFor="username">Username</label>
          <input
            id="username"
            name="username"
            type="text"
            aria-required="true"
            aria-describedby="usernameHint"
            ref={firstInputRef}
            onKeyDown={handleKeyDown} // Listen for Escape key
          />
          <span id="usernameHint">Enter your username.</span>

          <label htmlFor="password">Password</label>
          <input
            id="password"
            name="password"
            type="password"
            aria-required="true"
            onKeyDown={handleKeyDown} // Listen for Escape key
          />

          {error && (
            �<p id="errorMessage" role="alert" aria-

live="assertive">
              {error}
            </p>
          )}

Chapter 16  Accessibility and Internationalization



306

          <button type="submit" aria-describedby="submitHelp">
            Submit
          </button>
          �<span id="submitHelp">Press Enter to submit the form. 

Press Escape to clear errors.</span>
        </form>
      </div>
    </FocusLock>
  );
}

export default AccessibleForm;

Figure 16-1.  Fully accessible React form with ARIA, focus 
management, and keyboard navigation

Chapter 16  Accessibility and Internationalization



307

In Listing 16-1, the form implements accessible design principles 

by using <label> elements linked to their corresponding input fields, 

ensuring compatibility with screen readers. The aria-required attribute 

indicates that the fields are mandatory, while aria-describedby provides 

additional guidance for users by linking input fields to contextual help text.

Furthermore, the focus management mechanism ensures that users 

navigating with keyboards or assistive technologies can seamlessly interact 

with the form. By incorporating react-focus-lock, the form maintains 

logical focus order, preventing users from unintentionally shifting focus 

outside of interactive elements.

With semantic HTML, ARIA attributes, and keyboard-friendly 

navigation, this implementation establishes a robust foundation for 

building accessible React forms that enhance usability for all users.

�Testing for Accessibility
Ensuring that your application meets accessibility standards is a crucial 

step in the development process. While implementing best practices is 

essential, testing accessibility with reliable tools and automated tests 

ensures your application remains inclusive as it evolves. This section 

covers the most effective tools and techniques for testing accessibility 

in React applications. A variety of tools are available to audit and test 

the accessibility of your application. These tools can highlight areas of 

improvement and validate your efforts:

•	 Axe DevTools: A popular browser extension that 

provides a detailed report of accessibility violations 

directly within your browser’s developer tools. It is easy 

to use and integrates seamlessly into your workflow.

Chapter 16  Accessibility and Internationalization



308

•	 Lighthouse: Built into Chrome DevTools, Lighthouse 

offers an accessibility score and actionable 

recommendations to improve your app’s usability. It also 

highlights areas like color contrast and semantic structure.

•	 Jest-axe: This JavaScript library enables automated 

accessibility testing during the development process. It 

integrates with Jest, a popular testing framework, and is 

particularly useful for unit testing React components.

�Writing Automated Tests for Accessibility
Automated tests play a vital role in maintaining the accessibility of your 

React components. They ensure that updates or new features do not 

inadvertently introduce accessibility issues. The jest-axe library is a great 

tool for this purpose, as it works seamlessly with React components. The 

example in Listing 16-2 demonstrates how to write an accessibility test for 

the AccessibleForm component using Jest and jest-axe, and Figure 16-2 

shows the result of running test cases.

Listing 16-2.  Accessibility Test Using jest-axe

import React from "react";
import { render, screen, fireEvent } from "@testing-
library/react";
import { axe } from "jest-axe";
import AccessibleForm from "./AccessibleForm";

describe("AccessibleForm Accessibility Tests", () => {
  �// Test 1: Ensure the component has no accessibility 
violations

  it("should have no accessibility violations", async () => {
    const { container } = render(<AccessibleForm />);

Chapter 16  Accessibility and Internationalization



309

    const results = await axe(container);
    expect(results).toHaveNoViolations();
  });

  �// Test 2: Ensure all form elements are accessible by 
screen readers

  it("should have properly labeled input fields", () => {
    render(<AccessibleForm />);

    const usernameLabel = screen.getByLabelText("Username");
    const passwordLabel = screen.getByLabelText("Password");

    expect(usernameLabel).toBeInTheDocument();
    expect(passwordLabel).toBeInTheDocument();
  });

  // Test 3: Ensure focus starts on the first input field
  �it("should focus on the username input when the form 
loads", () => {

    render(<AccessibleForm />);

    const usernameInput = screen.getByLabelText("Username");
    expect(usernameInput).toHaveFocus();
  });
});

Figure 16-2.  Automated test cases for accessibility

Chapter 16  Accessibility and Internationalization



310

In Listing 16-2, the axe function is used to analyze the AccessibleForm 

component rendered by React Testing Library. The test checks for any 

accessibility violations and ensures that none are present. By incorporating 

such tests into your CI/CD pipeline, you can automatically catch and 

address accessibility issues before they reach production. Testing 

accessibility not only validates your implementation but also helps you 

identify gaps in your design. A combination of manual audits using tools 

like Axe DevTools and automated tests with jest-axe ensures that your 

application is robust and inclusive for all users.

�Internationalization (i18n) in React
Internationalization, often abbreviated as i18n, plays a critical role in 

making applications accessible and adaptable to users worldwide. By 

enabling applications to support multiple languages, regional formats, 

and cultural preferences, developers can enhance the user experience and 

expand their reach to a global audience.

Internationalization allows users to interact with an application in 

their preferred language and format, breaking language barriers and 

creating a personalized experience. Beyond translation, it ensures that 

date, time, and currency formats are automatically adapted to the user’s 

regional settings. For instance, while the United States may use a dollar 

symbol with commas separating thousands, European countries often use 

a comma as a decimal separator with the euro symbol.

React offers robust libraries to streamline the process of implementing 

internationalization. Two popular options include

•	 react-i18next: A powerful library that integrates 

seamlessly with React components, providing tools to 

handle translations, manage language switching, and 

support advanced features like interpolation

Chapter 16  Accessibility and Internationalization



311

•	 formatjs (React Intl): A comprehensive library that 

focuses on formatting numbers, dates, strings, and 

other locale-specific data, making it a great choice for 

projects with complex formatting requirements

�Setting Up react-i18next
To demonstrate how internationalization can be implemented, I’ll walk 

you through setting up react-i18next for a simple multilingual application.

Step 1: Install the library
Begin by installing the required libraries using npm:

npm install react-i18next i18next

Step 2: Create translation files
Define your translations in separate JSON files for each language. 

For instance, create en.json for English and es.json for Spanish in the 

locales folder:

// en.json
{
  "welcomeMessage": "Welcome to our website!"
}

// es.json
{
  "welcomeMessage": "¡Bienvenido a nuestro sitio web!"
}

Chapter 16  Accessibility and Internationalization



312

Step 3: Initialize the i18n configuration
Configure i18n to load the translations and set the default language:

import i18n from "i18next";
import { initReactI18next } from "react-i18next";
import enTranslation from "./locales/en.json";
import esTranslation from "./locales/es.json";

i18n.use(initReactI18next).init({
  resources: {
    en: { translation: enTranslation },
    es: { translation: esTranslation },
  },
  lng: "en", // Default language
  �fallbackLng: "en", // Fallback language if translation 
is missing

  �interpolation: { escapeValue: false }, // React already 
escapes values

  detection: {
    order: ["localStorage", "cookie", "navigator"],
    �caches: ["localStorage", "cookie"], // Stores selected 

language
  },
});

export default i18n;

In this configuration, the resources object specifies the translation 

files for each language. The lng property sets the default language, while 

fallbackLng ensures the app reverts to a default language if a translation 

is unavailable.

Step 4: Use the useTranslation hook in your components
The useTranslation hook from react-i18next makes it easy to access 

translation keys in your components:

Chapter 16  Accessibility and Internationalization



313

import { useTranslation } from "react-i18next";

function Welcome() {
  const { t } = useTranslation();

  �return <h1>{t("welcomeMessage", "Default Welcome 
Message")}</h1>;

}

export default Welcome;

Figure 16-3.  Recommended folder structure for locales and i18n.js

In this example, the t function is used to fetch the translated text for 

the key welcomeMessage. Depending on the currently selected language, 

it will render either "Welcome to our website!" or "¡Bienvenido a 
nuestro sitio web!" Listing 16-3 shows a concise implementation of a 

multilingual React component using react-i18next, and the corresponding 

output is illustrated in Figure 16-4.

Chapter 16  Accessibility and Internationalization



314

Listing 16-3.  Multilingual React Application

import React from "react";
import { useTranslation } from "react-i18next";

const Welcome = () => {
  const { t, i18n } = useTranslation();

  const switchLanguage = (lang) => {
    �i18n.changeLanguage(lang); // Dynamically change the 

language
  };

  return (
    <div>
      �<button onClick={() => 

switchLanguage("en")}>English</button>
      �<button onClick={() => 

switchLanguage("es")}>Español</button>
      <h1>{t("welcomeMessage")}</h1>
    </div>
  );
}

export default Welcome;

Chapter 16  Accessibility and Internationalization



315

Figure 16-4.  Multilingual React component

In Listing 16-3, this component allows users to switch between English 

and Spanish dynamically by clicking the respective buttons, demonstrating 

how react-i18next simplifies language handling in React applications. By 

following these steps, you can ensure that your React application provides 

a seamless and localized experience for users from diverse linguistic and 

cultural backgrounds. Whether you’re building a small personal project or 

a large-scale enterprise app, internationalization is key to achieving a truly 

global reach.

�Summary
In this chapter, we explored how to make React applications accessible 

and adaptable for users with diverse abilities and cultural backgrounds. 

Accessibility was highlighted as a critical aspect of modern web 

applications, ensuring usability for people with visual, auditory, motor, 

or cognitive impairments. Techniques such as using semantic HTML, 

Chapter 16  Accessibility and Internationalization



316

proper labeling, ARIA attributes, and managing keyboard navigation 

were demonstrated to enhance the accessibility of forms and navigation 

components.

We also covered tools like Axe DevTools, Lighthouse, and jest-axe, 

which help identify and fix accessibility issues. A practical example 

showcased how to write automated tests using jest-axe to ensure React 

components remain accessible as the application evolves.

The chapter then shifted to internationalization (i18n), emphasizing 

its role in adapting applications to support multiple languages, currencies, 

and regional formatting. By integrating react-i18next, we demonstrated 

how to dynamically switch languages and manage translations efficiently. 

By implementing these techniques, developers can build React 

applications that are inclusive, user-friendly, and globally adaptable.

In the next chapter, we will transition to the process of preparing a 

React application for production. This includes optimizing the application 

for deployment, choosing the right hosting platforms, and setting up 

Continuous Integration and Deployment (CI/CD) pipelines.

Chapter 16  Accessibility and Internationalization



317© Nitesh Upadhyaya 2025 
N. Upadhyaya, Advanced Front-End Development,  
https://doi.org/10.1007/979-8-8688-1318-4_17

CHAPTER 17

Deployment 
and Continuous 
Integration
In this chapter, we will explore the critical steps required to take React 

applications from development to production. Deployment is not merely 

about hosting an application; it involves preparing the application for 

optimal performance, ensuring it is secure, and deploying it to a platform 

that meets business needs. Continuous Integration and Deployment  

(CI/CD) further enhance this process by automating testing, building, and 

deployment workflows, ensuring stability and efficiency throughout the 

application’s lifecycle.

Deploying a React application involves several considerations. 

First, developers must optimize their applications by minifying assets, 

bundling code efficiently, and utilizing techniques like lazy loading 

to enhance performance. Once optimized, the application needs to be 

configured for production with environment variables to securely handle 

sensitive data. These steps ensure that the application is ready for a 

smooth and efficient deployment.

Choosing the right deployment platform is another critical step. 

Platforms like Netlify, Vercel, and AWS Amplify provide seamless 

integration for hosting React applications. These platforms support 

https://doi.org/10.1007/979-8-8688-1318-4_17#DOI


318

custom domain configurations, HTTPS, and offer unique features tailored 

to modern web development needs. The chapter will dive into the specifics 

of deploying React applications on these platforms, equipping developers 

with practical knowledge for different hosting scenarios.

Continuous Integration and Deployment (CI/CD) are indispensable 

for maintaining modern applications. By automating repetitive tasks 

such as testing, building, and deploying code, CI/CD pipelines enhance 

development speed and ensure stability. Setting up CI/CD pipelines 

with tools like GitHub Actions enables teams to deploy applications 

automatically after successful builds and tests, reducing manual effort and 

minimizing errors.

Post-deployment maintenance is equally vital. Monitoring tools like 

Sentry and LogRocket help track application performance and detect 

issues in production. Setting up alerts and dashboards ensures developers 

can respond quickly to errors or performance bottlenecks, maintaining a 

high-quality user experience.

By the end of this chapter, developers will have a comprehensive 

understanding of preparing, deploying, and maintaining React 

applications in production environments, as well as automating these 

processes for efficiency and reliability.

�Preparing Your React App for Deployment
Deploying a React application involves more than simply hosting it; it 

requires optimizing the app for performance, configuring environment 

variables, and generating a production-ready build. Proper preparation 

ensures that the application runs smoothly, performs well, and meets 

production requirements.

Chapter 17  Deployment and Continuous Integration



319

�Optimizing for Production
Optimization is a crucial step to ensure that the application loads quickly 

and efficiently for users. Several strategies can be implemented to 

achieve this:

	 1.	 Code Minification: Minifying JavaScript and CSS 

files reduces their file sizes, leading to faster load 

times. Tools like Webpack and Vite handle this 

automatically during the build process. Minification 

removes unnecessary whitespace, comments, and 

other non-essential elements from the code.

	 2.	 Tree Shaking: This process removes unused 

code from the final bundle. By eliminating dead 

code, tree shaking ensures that only the required 

components are included, reducing the bundle 

size. This technique is particularly effective when 

working with modular libraries like Lodash.

	 3.	 Lazy Loading: To enhance performance, 

components should be loaded dynamically only 

when they are needed. React provides built-in 

support for lazy loading through React.lazy() and 

Suspense. For example, Listing 17-1 demonstrates 

how to lazy load a component to minimize initial 

load times.

Listing 17-1.  Lazy Loading a React Component

import React, { Suspense } from "react";

const LazyComponent = React.lazy(() => import 
("./LazyComponent"));

Chapter 17  Deployment and Continuous Integration



320

const App = () => {
  return (
    <div>
      <Suspense fallback={<div>Loading...</div>}>
        <LazyComponent />
      </Suspense>
    </div>
  );
}

export default App;

	 4.	 Image Optimization: Optimized images 

significantly improve performance. Use compressed 

formats like WebP to reduce image sizes without 

compromising quality. Additionally, lazy loading 

images ensures that only images in the user’s 

viewport are loaded initially, further speeding up 

the application.

�Setting Up Environment Variables
Environment variables are essential for managing application 

configurations securely and efficiently across different environments 

(development, staging, production). These variables are typically stored 

in .env files to avoid hardcoding sensitive information like API keys. 

Examples of an .env file are listed below:

REACT_APP_API_URL=https://api.example.com
REACT_APP_API_KEY=your-secret-api-key

Chapter 17  Deployment and Continuous Integration



321

In React, environment variables must be prefixed with REACT_APP_ 

to be accessible within the application. Listing 17-2 illustrates how to use 

an environment variable in your application code. If you add or update 

environment variables, you must restart your React development server 

(npm start or yarn start).

Listing 17-2.  Using Environment Variables in React

const apiUrl = process.env.REACT_APP_API_URL;
fetch(`${apiUrl}/endpoint`)
  .then((response) => response.json())
  .then((data) => console.log(data));

�Creating a Build
The final step in preparing the application for deployment is to create a 

production-ready build. This build process optimizes the application by 

applying minification, bundling, and other performance enhancements. 

To generate a production build, use the following command:

npm run build

This command creates a build/ directory containing static files that 

are ready to be deployed. These files include an optimized index.html, 

JavaScript bundles, and other assets necessary for running the application. 

Figure 17-1 describes the expected folder structure of the build directory.

Chapter 17  Deployment and Continuous Integration



322

Figure 17-1.  Build directory structure

This folder structure contains everything needed to deploy your React 

application to a hosting platform.

By following these steps, developers can ensure that their React 

applications are optimized, secure, and ready to be deployed in production 

environments. In the next section, we will explore various deployment 

platforms and their specific configurations to host React applications 

effectively. Let’s move on to deployment platforms to complete the process.

�Deployment Platforms
After preparing your React application for production, the next step is to 

deploy it to a hosting platform. Selecting the right deployment platform 

is critical to ensuring scalability, performance, and ease of management. 

This section explores popular deployment platforms, each tailored to 

different use cases, and provides step-by-step instructions for deploying 

your React app.

Chapter 17  Deployment and Continuous Integration



323

�Popular Deployment Platforms

	 1.	 Netlify: Netlify is a powerful and easy-to-use 

platform for deploying modern web applications. Its 

seamless integration with Git repositories allows for 

automatic builds and deployments. Netlify supports 

serverless functions, custom domains, and HTTPS 

out of the box, making it a popular choice among 

developers.

	 2.	 Vercel: Vercel is specifically optimized for React 

applications and offers features like preview URLs 

for every commit, serverless functions, and fast 

global content delivery. It’s an excellent choice for 

applications that require dynamic updates and real-

time collaboration.

	 3.	 AWS Amplify: AWS Amplify is a scalable hosting 

platform with built-in CI/CD capabilities. It 

integrates deeply with other AWS services, making it 

ideal for applications that need back-end integration 

or require a cloud-native approach.

�Deploying to Netlify
Netlify simplifies the deployment process by automatically building and 

deploying applications whenever code is pushed to a linked Git repository. 

Follow the steps below to deploy your React app:

	 1.	 Push Your Code to a Git Repository
Ensure your React app is hosted on a Git platform 

such as GitHub, GitLab, or Bitbucket.

Chapter 17  Deployment and Continuous Integration



324

	 2.	 Link the Repository to Netlify
Create a Netlify account and link your Git repository 

to it. Netlify will automatically detect the repository 

and import your project.

	 3.	 Set the Build Command and Publish Directory
During the setup process, specify the build 

command as npm run build and the publish 

directory as build/.

	 4.	 Deploy Automatically
Netlify will build and deploy your application 

automatically after every commit to the repository. 

This workflow ensures that your live application is 

always up to date. Listing 17-3 illustrates the Netlify 

Build Settings.

Listing 17-3.  Netlify Build Settings

Build Command: npm run build
Publish Directory: build/

�Deploying to Vercel
Vercel is another excellent platform for hosting React applications. It 

provides a simple CLI tool for deploying your applications in minutes.

	 1.	 Install the Vercel CLI
Install the Vercel CLI globally on your machine 

using npm:

npm install -g vercel

Chapter 17  Deployment and Continuous Integration



325

	 2.	 Deploy the Application
Navigate to your project directory and run the vercel 

command:

vercel

	 3.	 Follow the Prompts
The first time you run Vercel, it will prompt you 

to log in if you are not already logged in. Next, it 

will ask you to select a project scope, allowing you 

to choose between a personal account or a team. 

Finally, Vercel will automatically detect your project 

type, such as React, and configure the deployment 

settings accordingly.

	 4.	 Access Your Live Application
Once the deployment is complete, Vercel provides 

a live URL for your application, which updates 

dynamically with each new commit, for example, 

https://your-project.vercel.app. Listing 17-4 

illustrates the Vercel Build Settings.

Listing 17-4.  Deploying to Vercel

npm install -g vercel
vercel

Deploying your React application to these platforms ensures a reliable 

and professional hosting environment with minimal effort. Both Netlify 

and Vercel are developer-friendly and automate much of the deployment 

process, while AWS Amplify provides scalability and powerful back-end 

integrations for advanced use cases.

In the next section, we will explore how to integrate Continuous 

Integration and Deployment (CI/CD) pipelines to automate your builds 

and deployments further, ensuring efficiency and stability.

Chapter 17  Deployment and Continuous Integration

https://your-project.vercel.app


326

�Continuous Integration and 
Deployment (CI/CD)
As React applications grow in complexity, manual deployment processes 

become inefficient and error-prone. Continuous Integration (CI) and 

Continuous Deployment (CD) are essential practices that automate the 

testing, building, and deployment of applications, ensuring consistency, 

reliability, and speed.

�What Is CI/CD?

•	 Continuous Integration (CI): CI automates the testing 

and merging of code changes into a shared repository. 

Developers can push their changes frequently without 

worrying about breaking the build, as CI ensures that 

all code is validated through automated tests.

•	 Continuous Deployment (CD): CD takes automation a 

step further by deploying the application to production 

automatically after all CI checks pass. This practice 

eliminates manual intervention, ensuring faster and 

more reliable releases.

�Setting Up CI/CD with GitHub Actions
GitHub Actions is a powerful automation platform that simplifies 

setting up Continuous Integration and Continuous Deployment (CI/
CD) pipelines for React applications. By automating the build, test, and 

deployment process, you can ensure smooth, error-free updates to your 

Netlify-hosted application with every push to your repository.

Chapter 17  Deployment and Continuous Integration



327

Step 1: Creating a GitHub Actions Workflow File
To set up a CI/CD pipeline for deploying a React application to Netlify, 

you need to create a workflow file (deploy.yml) that defines the steps 

to build, test, and deploy your project automatically. Refer to Figure 17-2 

for CI/CD workflow file location in your project. Place the file inside your 

project as .github/workflows/deploy.yml.

Figure 17-2.  CI/CD workflow file location

Step 2: Writing the CI/CD Workflow Configuration
Listing 17-5 shows the complete GitHub Actions workflow file for 

deploying a React application to Netlify.

Listing 17-5.  CI/CD Pipeline Workflow with GitHub Actions

name: CI/CD Pipeline for Netlify

on:
  push:
    branches:
      - main

jobs:
  build:
    runs-on: ubuntu-latest

Chapter 17  Deployment and Continuous Integration



328

    steps:
      - name: Checkout Repository Code
        uses: actions/checkout@v4

      - name: Set Up Node.js
        uses: actions/setup-node@v4
        with:
          node-version: 18

      - name: Install Dependencies
        run: npm install

      - name: Run Tests
        run: npm test

      - name: Build the React Application
        run: npm run build

      - name: Deploy to Netlify
        uses: nwtgck/actions-netlify@v2
        with:
          publish-dir: ./build
          production-branch: main
          github-token: ${{ secrets.GITHUB_TOKEN }}
          deploy-message: "Deployed via GitHub Actions"
        env:
          NETLIFY_AUTH_TOKEN: ${{ secrets.NETLIFY_AUTH_TOKEN }}
          NETLIFY_SITE_ID: ${{ secrets.NETLIFY_SITE_ID }}

Step 3: Explanation of Steps
Each step in the workflow performs a critical role in automating the 

deployment process:

Chapter 17  Deployment and Continuous Integration



329

	 1.	 Check Out Repository Code: Retrieves the latest 

project files from the GitHub repository.

	 2.	 Set Up Node.js: Installs Node.js (version 18) to run 

the React application.

	 3.	 Install Dependencies: Runs npm install to install 

required project dependencies.

	 4.	 Run Tests: Executes automated tests using npm test 

to validate code changes before deployment.

	 5.	 Build the React Application: Runs npm run build 

to generate an optimized production-ready version 

of the application.

	 6.	 Deploy to Netlify: Uses the Netlify CLI action 

(nwtgck/actions-netlify@v2) to deploy the built 

application (./build folder) to Netlify. The Netlify 
authentication tokens (NETLIFY_AUTH_TOKEN and 

NETLIFY_SITE_ID) are securely stored as GitHub 
Secrets, ensuring a safe deployment process.

Step 4: Configuring Netlify Authentication Secrets
To allow GitHub Actions to deploy to Netlify, you must configure 

authentication credentials as GitHub repository secrets. Steps to add 

Netlify Authentication Tokens in GitHub are shown below:

•	 Go to your GitHub repository.

•	 Navigate to Settings ➤ Secrets and Variables ➤ 

Actions.

•	 Click “New Repository Secret.”

Chapter 17  Deployment and Continuous Integration



330

•	 Add the following secrets:

•	 NETLIFY_AUTH_TOKEN ➤ Found in Netlify ➤ “User 

Settings” ➤ “Personal Access Tokens.”

•	 NETLIFY_SITE_ID ➤ Found in Netlify ➤ “Site 

Settings” ➤ “Site Information.”

Step 5: Pushing Changes to Trigger Deployment
Once the workflow file (deploy.yml) is committed to the repository, 

GitHub Actions will execute the deployment automatically every time 
you push changes to the main branch. To push changes and trigger 

deployment, run

git add .
git commit -m "Added GitHub Actions CI/CD for Netlify"
git push origin main

Step 6: Monitoring Deployment in GitHub Actions
After pushing your changes, you can monitor the workflow execution 

in GitHub Actions by navigating to your GitHub repository and clicking 

the “Actions” tab. From there, select the CI/CD pipeline workflow to 

track the status of each step in the deployment process. If the deployment 

is successful, Netlify will generate a live URL for your deployed React 

application.

�Automating Tests and Builds
Automated testing and linting are integral to the CI process. Running these 

checks during CI ensures that issues are caught early, maintaining the 

quality and stability of the codebase. You can include Listing 17-6 script in 

your CI pipeline to run tests and lint the code.

Chapter 17  Deployment and Continuous Integration



331

Listing 17-6.  Test and Lint Command

npm test && npm run lint

This command runs the project’s test suite followed by linting checks. 

If any test fails or the code does not meet linting standards, the CI process 

halts, preventing a flawed build from being deployed.

By integrating CI/CD pipelines into your development workflow, you 

can automate the testing, building, and deployment processes, ensuring 

consistent and reliable releases. In the next section, we will explore how 

to monitor and track your application in production, enabling you to 

maintain a high-quality user experience.

�Monitoring and Error Tracking in Production
Once your React application is live, monitoring and error tracking become 

essential for maintaining performance, identifying issues, and ensuring a 

seamless user experience. Monitoring tools provide insights into how the 

application performs in real-world conditions and help developers detect 

and resolve issues before they impact users.

Monitoring ensures that your application continues to perform 

optimally after deployment. It helps detect issues such as crashes, slow 

performance, or API failures early, allowing developers to address them 

proactively. By using monitoring and error-tracking tools, you can also 

analyze user behavior, identify bottlenecks, and improve the overall 

experience. Several tools are available for monitoring React applications in 

production, each catering to different needs:

	 1.	 Sentry: Sentry is a popular tool for tracking errors, 

performance issues, and user feedback. It integrates 

seamlessly with React and provides detailed error 

reports, stack traces, and context to debug issues 

effectively.

Chapter 17  Deployment and Continuous Integration



332

	 2.	 LogRocket: LogRocket records user sessions 

and logs front-end issues, making it easier to 

understand and reproduce bugs. By visualizing user 

interactions, it provides developers with actionable 

insights into UI problems.

	 3.	 New Relic: New Relic is a comprehensive 

monitoring solution that tracks both front-end 

and back-end performance. It offers metrics on 

application health, response times, and error rates, 

enabling end-to-end observability.

�Setting Up Sentry for Error Tracking
Sentry is a powerful tool for error tracking and performance monitoring 

in React applications. It helps developers capture exceptions, track 

performance bottlenecks, and proactively resolve issues. This section 

demonstrates how to integrate Sentry into a React project.

Step 1: Installing Sentry in a React Project
To integrate Sentry, install the required dependencies using npm. 

These packages enable error tracking and performance monitoring 

within a React application.

npm install @sentry/react @sentry/tracing

Step 2: Initializing Sentry
Initialize Sentry in your application to start capturing errors and 

performance data. Place the initialization code in your app’s entry file (e.g., 

index.js or App.js) as shown in Listing 17-7.

Chapter 17  Deployment and Continuous Integration



333

Listing 17-7.  Initializing Sentry in a React Application

import * as Sentry from "@sentry/react";
import { BrowserTracing } from "@sentry/react";

Sentry.init({
  �dsn: "https://your-dsn.sentry.io/", // Replace with your DSN 
from Sentry

  integrations: [new BrowserTracing()],
  tracesSampleRate: 1.0, // Adjust for performance monitoring
  replaysSessionSampleRate: 0.1, // Enables session replays
});

The DSN (Data Source Name) is a unique identifier assigned to 

your project in Sentry, allowing it to collect and organize error data. 

The tracesSampleRate defines the fraction of transactions captured for 

performance monitoring, helping track application performance metrics. 

Additionally, the replaysSessionSampleRate enables session replays, 

allowing developers to diagnose user issues by recording and analyzing 

interactions leading up to an error.

Step 3: Capturing Errors with Sentry
Use Sentry to capture exceptions and log errors programmatically. 

For example, wrap potentially error-prone code in a try-catch block and 

report errors to Sentry. To report errors programmatically, use Sentry.
captureException() inside a try-catch block as shown in Listing 17-8.

Listing 17-8.  Capturing Errors with Sentry

try {
  // Code that might throw an error
  throw new Error("An unexpected error occurred!");
} catch (error) {
  Sentry.captureException(error);
}

Chapter 17  Deployment and Continuous Integration



334

With this setup, any unhandled exceptions or errors logged with 

Sentry.captureException will be reported to your Sentry dashboard, 

providing detailed stack traces and debugging information.

By integrating monitoring tools like Sentry into your production 

workflow, you can maintain a high-quality user experience and proactively 

address issues. Tools like LogRocket and New Relic complement error 

tracking by offering user session replays and full-stack monitoring 

capabilities.

�Summary
In this chapter, we covered the essential steps to prepare, deploy, and 

maintain React applications in production environments. We began 

by exploring optimization techniques like code minification, tree 
shaking, lazy loading, and image optimization to enhance application 

performance. Additionally, the use of environment variables for secure 

and flexible configuration management was discussed, followed by 

creating a production-ready build using the npm run build command.

The chapter then introduced popular deployment platforms like 

Netlify, Vercel, and AWS Amplify, each suited for specific hosting needs. 

Detailed steps for deploying applications to Netlify and Vercel were 

provided, highlighting features such as automatic builds, custom domains, 

and HTTPS support.

We also delved into Continuous Integration and Deployment (CI/

CD) pipelines using GitHub Actions. By automating testing, building, 

and deployment processes, CI/CD ensures efficient workflows and 

reduces errors. A practical step-by-step example demonstrated setting 

up a pipeline to deploy a React app to Netlify, showcasing the benefits of 

automation.

Chapter 17  Deployment and Continuous Integration



335

Finally, the importance of monitoring and error tracking in production 

was emphasized. Tools like Sentry and LogRocket were introduced to 

track application performance, capture errors, and improve debugging. 

Setting up Sentry for error tracking was demonstrated with code examples 

to help developers maintain high-quality user experiences in production.

By the end of this chapter, developers gained a comprehensive 

understanding of deploying React applications, automating workflows 

with CI/CD, and monitoring applications in production.

In the next chapter, we will explore how to enhance React applications 

by integrating third-party services and APIs. This includes learning how 

to fetch data using libraries like Axios, manage asynchronous operations, 

and securely handle API keys.

Chapter 17  Deployment and Continuous Integration



337© Nitesh Upadhyaya 2025 
N. Upadhyaya, Advanced Front-End Development,  
https://doi.org/10.1007/979-8-8688-1318-4_18

CHAPTER 18

Integrating  
Third-Party Services 
and APIs
Integrating third-party services and APIs is essential for building modern, 

feature-rich React applications. This chapter explores how to enhance 

applications by fetching data from REST APIs, using GraphQL for efficient 

data queries, and integrating popular services like Firebase and Stripe for 

advanced capabilities.

We begin with techniques for fetching data using the Fetch API and 

libraries like Axios, focusing on handling asynchronous operations with 

Promises and async/await. You’ll also learn how to manage loading and 

error states to improve the user experience. Next, we introduce GraphQL 

and demonstrate how to use Apollo Client to query and cache data in 

React applications efficiently.

The chapter then provides practical examples of integrating Firebase 

for authentication and real-time databases, as well as Stripe for secure 

payment processing. Each integration includes step-by-step guidance and 

best practices to ensure smooth implementation and configuration.

By the end of this chapter, developers will have a strong foundation 

for working with external APIs and third-party services, enabling them to 

build dynamic and scalable React applications with ease.

https://doi.org/10.1007/979-8-8688-1318-4_18#DOI


338

�Introduction to Third-Party Services
Integrating third-party services is a powerful way to accelerate 

development and enhance the functionality of React applications. These 

services provide prebuilt solutions for common requirements, allowing 

developers to focus on building unique features rather than reinventing 

the wheel.

�Why Use Third-Party Services?

	 1.	 Saves Development Time: Third-party services 

offer ready-to-use features like authentication, 

payments, and analytics. Developers can 

integrate these solutions with minimal effort, 

significantly reducing the time needed for custom 

implementations.

	 2.	 Reliability: Established services handle critical 

aspects like scaling, security, and maintenance, 

ensuring consistent performance and reliability for 

your application.

	 3.	 Focus on Core Functionality: By outsourcing 

common functionalities to third-party providers, 

developers can concentrate on building the core 

features that make their application unique.

�Examples of Popular Services

	 1.	 Firebase: Provides tools for authentication, real-

time databases, and hosting, making it ideal for 

rapid development of full-stack applications

Chapter 18  Integrating Third-Party Services and APIs 



339

	 2.	 Stripe: A popular solution for secure and flexible 

payment processing, supporting a wide range of 

payment methods

	 3.	 Google Maps: Offers powerful mapping and 

location services, ideal for applications requiring 

geolocation or navigation features

	 4.	 SendGrid: Simplifies sending transactional and 

marketing emails, with features like templates, 

analytics, and email tracking

By leveraging these services, developers can build robust applications 

with advanced capabilities while maintaining efficiency and reliability. In 

the next section, we will delve into the basics of working with APIs, starting 

with fetching data from REST APIs.

�Working with REST APIs
APIs are the backbone of modern web applications, enabling 

communication between the front-end and external data sources or 

services. This section explores how to fetch data from REST APIs using 

fetch and axios in React, along with techniques for handling errors 

gracefully.

�Fetching Data with fetch 
The Fetch API is a built-in JavaScript method for making HTTP requests. 

Listing 18-1 shows an example of fetching data from a REST API and 

rendering it in a React component as illustrated in Figure 18-1.

Chapter 18  Integrating Third-Party Services and APIs 



340

Listing 18-1.  Fetching Data with fetch

import React, { useEffect, useState } from "react";

const FetchExample = () => {
  const [data, setData] = useState(null); // Handle null case
  const [loading, setLoading] = useState(true);
  const [error, setError] = useState(null);

  useEffect(() => {
    fetch("https://jsonplaceholder.typicode.com/posts")
      .then((response) => {
        if (!response.ok) {
          �throw new Error(`HTTP error! Status: ${response.

status}`);
        }
        return response.json();
      })
      .then((data) => {
        setData(data);
        setLoading(false);
      })
      .catch((error) => {
        setError(error.message);
        setLoading(false);
      });
  }, []);

  if (loading) return <p>Loading...</p>;
  if (error) return <p>Error: {error}</p>;

  return (
    <ul>
      {data.map((item) => (

Chapter 18  Integrating Third-Party Services and APIs 



341

        <li key={item.id}>{item.title}</li>
      ))}
    </ul>
  );
}

export default FetchExample;

Figure 18-1.  Fetching data with Fetch API

The useEffect hook is used to fetch data as soon as the component 

mounts, ensuring the API request is triggered only once during the 

component’s lifecycle. The API response is then converted to JSON format 

Chapter 18  Integrating Third-Party Services and APIs 



342

and stored in the data state using the setData() function. Finally, the 

map() function iterates over the fetched data and dynamically renders 

it as a list, providing a simple and efficient way to display the retrieved 

information.

�Using Axios for Fetching Data
Axios is a popular HTTP client that simplifies data fetching and provides 

advanced features like automatic JSON parsing and error handling. Install 

Axios if not already installed using npm install axios. The example in 

Listing 18-2 demonstrates using axios to fetch data with error handling, 

and the corresponding output is displayed in Figure 18-2.

Listing 18-2.  Fetching Data with Axios

import axios from "axios";
import React, { useEffect, useState } from "react";

const AxiosExample = () => {
  �const [data, setData] = useState(null); // Use null instead 
of empty array

  const [loading, setLoading] = useState(true);
  const [error, setError] = useState(null);

  useEffect(() => {
    �const controller = new AbortController(); // To prevent 

memory leaks
    const fetchData = async () => {
      try {
        �const response = await axios.get("https://

jsonplaceholder.typicode.com/posts", {
          �signal: controller.signal, // Attach signal for 

request cancellation

Chapter 18  Integrating Third-Party Services and APIs 



343

        });
        setData(response.data);
      } catch (error) {
        if (axios.isAxiosError(error)) {
          �setError(`Error: ${error.response?.status || "Network 

Error"}`);
        } else {
          setError("Unexpected Error");
        }
        console.error("Error fetching data:", error);
      } finally {
        setLoading(false);
      }
    };

    fetchData();

    return () => {
      controller.abort(); // Cleanup on unmount
    };
  }, []);

  if (loading) return <p>Loading...</p>;
  if (error) return <p>{error}</p>;

  return (
    <ul>
      {data.map((item) => (
        <li key={item.id}>{item.title}</li>
      ))}
    </ul>
  );
}

export default AxiosExample;

Chapter 18  Integrating Third-Party Services and APIs 



344

Figure 18-2.  Fetching data with Axios API

The axios.get() method is used to fetch data from the API, with the 

resulting response being stored in the data state. Any errors that occur 

during the API request are captured in the catch block and saved in the 

error state. If an error is encountered, it is displayed to the user through 

an appropriate error message, ensuring a better user experience and clear 

communication about issues with the API request.

�Handling API Errors Gracefully
Error handling is crucial when working with APIs to provide a better user 

experience. See Listing 18-3 for retry logic example.

Chapter 18  Integrating Third-Party Services and APIs 



345

	 1.	 Display Error Messages: Show meaningful 

error messages to users instead of generic ones. 

For instance, “Unable to fetch data, please try 

again later.”

	 2.	 Fallback Data: Use default or cached data as a 

fallback when the API is unavailable. This keeps the 

application functional even during outages.

	 3.	 Retry Logic with Exponential Backoff: For 

unreliable APIs, implement retry logic with 

increasing delays between attempts. This helps 

mitigate transient network errors.

Listing 18-3.  Retry Logic Example

import axios from "axios";

async const fetchDataWithRetry = (url, retries = 3, delay  
= 1000) => {
  for (let i = 0; i < retries; i++) {
    try {
      const response = await axios.get(url);
      return response.data;
    } catch (error) {
      if (axios.isAxiosError(error)) {
        const status = error.response?.status;

        // Only retry for network-related or 5xx server errors
        if (status && status < 500) {
          �console.error(`Client error ${status}: Not 

retrying`);
          throw error;
        }
      }

Chapter 18  Integrating Third-Party Services and APIs 



346

      if (i < retries - 1) {
        �console.warn(`Retry ${i + 1}/${retries} in ${delay}

ms...`);
        �await new Promise((resolve) => setTimeout(resolve, 

delay));
        delay *= 2; // Exponential backoff
      } else {
        console.error("Max retries reached. Throwing error.");
        throw error;
      }
    }
  }
}

// Example usage
fetchDataWithRetry("https://jsonplaceholder.typicode.
com/posts")
  .then((data) => console.log("Fetched data:", data))
  .catch((error) => console.error("Final error:", error));

By mastering the techniques outlined above, developers can efficiently 

fetch data from REST APIs while handling errors gracefully. In the next 

section, we will delve into the world of GraphQL and explore how it 

provides a more flexible and efficient alternative to REST for data fetching 

in React applications.

�GraphQL Integration
GraphQL offers a modern and flexible alternative to REST APIs by allowing 

clients to request precisely the data they need. With its query language and 

schema-based design, GraphQL enhances the efficiency of data fetching and 

minimizes over-fetching or under-fetching of data in React applications.

Chapter 18  Integrating Third-Party Services and APIs 



347

�What Is GraphQL?
GraphQL is a query language for APIs that enables clients to specify 

the exact structure and fields of the data they need. Unlike REST, where 

predefined endpoints determine the data format, GraphQL provides a 

single endpoint and lets the client control the data retrieval. This flexibility 

makes GraphQL an excellent choice for dynamic and data-intensive 

applications. To integrate GraphQL into a React application, we use 

the Apollo Client, a popular library for managing GraphQL queries and 

caching. Below is the step-by-step instruction for setting it up.

Step 1: Install Apollo Client
To begin, install the necessary packages:

npm install @apollo/client graphql

Step 2: Configure Apollo Client
Next, configure Apollo Client with your GraphQL endpoint and 

caching mechanism. Wrap your application with the ApolloProvider 

to provide the client instance to all components in the app as shown in 

Listing 18-4.

Listing 18-4.  Configuring Apollo Client

import { ApolloClient, InMemoryCache, ApolloProvider } from "@
apollo/client";
import YourComponent from "./YourComponent"; // Import your 
component

// Configure Apollo Client
const client = new ApolloClient({
  �uri: "https://example.com/graphql", // Replace with real 
GraphQL API

  cache: new InMemoryCache(),

Chapter 18  Integrating Third-Party Services and APIs 



348

  defaultOptions: {
    watchQuery: {
      �fetchPolicy: "cache-and-network", // Fetch fresh data 

while using cache
      �errorPolicy: "all", // Allows partial data when 

errors occur
    },
    query: {
      errorPolicy: "all",
    },
  },
});

// Main App Component
const App = () => {
  return (
    <ApolloProvider client={client}>
      <YourComponent />
    </ApolloProvider>
  );
}

export default App;

Step 3: Write GraphQL Queries
Write GraphQL queries using the gql template literal and execute 

them with the useQuery hook. The example in Listing 18-5 demonstrates 

fetching posts from a GraphQL API, and the corresponding output is 

shown in Figure 18-3.

Chapter 18  Integrating Third-Party Services and APIs 



349

Listing 18-5.  Writing and Using GraphQL Queries

import { gql, useQuery } from "@apollo/client";

const GET_POSTS = gql`
  query GetPosts {
    posts {
      id
      title
      content
    }
  }
`;

const Posts = () => {
  const { loading, error, data } = useQuery(GET_POSTS, {
    �fetchPolicy: "cache-and-network", // Uses cache first, but 

fetches fresh data
    �errorPolicy: "all", // Allows partial results if 

errors occur
  });

  if (loading) return <p>Loading...</p>;
  if (error) return <p>Error: {error.message}</p>;
  if (!data || !data.posts || data.posts.length === 0)
    return <p>No posts available.</p>;

  return (
    <ul>
      {data.posts.map((post) => (
        <li key={post.id}>
          <strong>{post.title}</strong>
          <p>{post.content}</p>
        </li>

Chapter 18  Integrating Third-Party Services and APIs 



350

      ))}
    </ul>
  );
}

export default Posts;

Figure 18-3.  Fetching data with GraphQL

The GET_POSTS GraphQL query specifies the fields (id, title, and 
content) to be fetched for each post, ensuring that only the required data 

is retrieved. The useQuery hook is used to execute the query and provides 

three states—loading, error, and data—which help manage the UI based 

on the query’s progress and results. Once the data is successfully fetched, it 

Chapter 18  Integrating Third-Party Services and APIs 



351

is dynamically rendered as a list, with each item generated from the data.
posts array, creating an efficient and responsive display of the retrieved 

content.

By integrating Apollo Client, developers can efficiently manage 

GraphQL queries and caching in React applications. In the next section, 

we will explore integrating popular third-party services like Firebase and 

Stripe to add advanced functionality to your projects.

�Payment Gateway Integration
Integrating a payment gateway into a React application is essential 

for enabling secure and seamless transactions. Stripe is a widely used 

payment gateway that provides an easy-to-integrate API and React library, 

making it an excellent choice for implementing payment functionality. 

The following steps demonstrate how to integrate Stripe into a React 

application to handle payment processing.

Step 1: Install Stripe Library
To start, install the required Stripe libraries using npm:

npm install @stripe/react-stripe-js @stripe/stripe-js

Step 2: Set Up Stripe Provider
Wrap your application with the Elements provider from Stripe and 

pass a stripePromise object created using the loadStripe method. This 

setup ensures that the Stripe context is available to all child components as 

shown in Listing 18-6.

Listing 18-6.  Configuring Stripe Provider

import { loadStripe } from "@stripe/stripe-js";
import { Elements } from "@stripe/react-stripe-js";
import PaymentForm from "./PaymentForm";

Chapter 18  Integrating Third-Party Services and APIs 



352

const stripePromise = loadStripe(import.meta.env.VITE_STRIPE_
STRIPE_PUBLIC_KEY); // Secure key usage

const PaymentPage = () => {
  return (
    <Elements stripe={stripePromise}>
      <PaymentForm />
    </Elements>
  );
}

export default PaymentPage;

The loadStripe function initializes Stripe by using your publishable 

key, which is obtained from the Stripe dashboard. This key is essential 

for establishing a secure connection with Stripe’s API. The Elements 

component acts as a provider, supplying the Stripe context to all child 

components within its scope. This setup ensures that all components can 

seamlessly access Stripe’s features and functionality.

Step 3: Create a Payment Form
Design a payment form that includes a card input field and a submit 

button. Use Stripe’s CardElement for securely collecting card details 

and the useStripe and useElements hooks for processing payments 

as illustrated in Listing 18-7. The corresponding output is displayed in 

Figure 18-4.

Listing 18-7.  Creating a Payment Form

// PaymentForm.jsx
import { useState } from "react";
import { CardElement, useStripe, useElements } from "@stripe/
react-stripe-js";

const PaymentForm = () => {

Chapter 18  Integrating Third-Party Services and APIs 



353

  const stripe = useStripe();
  const elements = useElements();
  const [error, setError] = useState(null);
  const [loading, setLoading] = useState(false);

  const handleSubmit = async (event) => {
    event.preventDefault();

    if (!stripe || !elements) {
      setError("Stripe is not properly initialized.");
      return;
    }

    setLoading(true);
    setError(null);

    �const { error, paymentMethod } = await stripe.
createPaymentMethod({

      type: "card",
      card: elements.getElement(CardElement),
    });

    if (error) {
      setError(error.message);
      setLoading(false);
    } else {
      console.log("Payment Success:", paymentMethod);
      setError(null);
      setLoading(false);
      alert("Payment Successful!"); // Simulate success message
    }
  };

  return (
    <form onSubmit={handleSubmit} className="payment-form">

Chapter 18  Integrating Third-Party Services and APIs 



354

      <CardElement className="card-input" />
      {error && <p className="error-message">{error}</p>}
      �<button type="submit" disabled={!stripe || loading} 

className="pay-button">
        {loading ? "Processing..." : "Pay"}
      </button>
    </form>
  );
}

export default PaymentForm;

Figure 18-4.  Payment gateway integration with Stripe

The CardElement component offers a prebuilt UI for securely 

capturing card details, ensuring compliance with security standards. The 

useStripe and useElements hooks facilitate seamless communication 

with Stripe’s API while managing the form elements effectively. The 

createPaymentMethod function uses the card details entered by the user 

to generate a payment method, returning either a paymentMethod object 

upon success or an error if the process fails.

Chapter 18  Integrating Third-Party Services and APIs 



355

�Integrating Firebase with React
Firebase is a Backend-as-a-Service (BaaS) platform provided by Google 

that helps developers build modern web and mobile applications without 
managing servers. It offers a suite of cloud-based tools, including 

Firestore (database), authentication, storage, and hosting. For this 

project, we will be using Firebase Firestore, a NoSQL cloud database that 

allows real-time data storage and retrieval.

Firebase Firestore eliminates the need for a back end, allowing 

developers to store and retrieve data directly from the front end. It provides 

real-time updates, ensuring data synchronization across multiple devices 

instantly. Designed for scalability, Firestore efficiently handles applications 

ranging from small projects to enterprise-level databases. Additionally, 

it is secure and managed by Google, offering built-in authentication 

and customizable security rules. I will manually add multiple entries 

to Firestore and retrieve them in a React application in a step-by-step 

instruction.

Step 1: Install Firebase
First, install Firebase in your project:

npm install firebase

Step 2: Initialize Firebase
Create a firebase.js file in /src as shown in Listing 18-8.

Listing 18-8.  Firebase Configuration File

//Firebase.js
import { initializeApp } from "firebase/app";
import { getFirestore, collection, getDocs } from "firebase/
firestore";

// Replace this with your Firebase project config
const firebaseConfig = {

Chapter 18  Integrating Third-Party Services and APIs 



356

  apiKey: "YOUR_API_KEY",
  authDomain: "YOUR_PROJECT_ID.firebaseapp.com",
  projectId: "YOUR_PROJECT_ID",
  storageBucket: "YOUR_PROJECT_ID.appspot.com",
  messagingSenderId: "YOUR_SENDER_ID",
  appId: "YOUR_APP_ID"
};

// Initialize Firebase
const app = initializeApp(firebaseConfig);
const db = getFirestore(app);

// Export Firestore functions
export { db, collection, getDocs };

Step 3: Fetch Data from Firestore
Now, let’s fetch data from a Firestore Product collection as shown in 

Listing 18-9.

Listing 18-9.  Fetch Data from Firebase Database

// FetchData.jsx
import { useState, useEffect } from "react";
import { db, collection, getDocs } from "./firebase";

function FetchData() {
  const [data, setData] = useState([]);

  useEffect(() => {
    const fetchData = async () => {
      try {

Chapter 18  Integrating Third-Party Services and APIs 



357

        �const querySnapshot = await getDocs(collection(db, 
"products")); // Replace with your collection name

        �const items = querySnapshot.docs.map(doc => ({ id: doc.
id, ...doc.data() }));

        setData(items);
      } catch (error) {
        console.error("Error fetching data:", error);
      }
    };

    fetchData();
  }, []);

  return (
    <div>
      <h2>Fetched Data from Firebase</h2>
      <ul>
        {data.map((item) => (
          <li key={item.id}>{item.name} - ${item.price}</li>
        ))}
      </ul>
    </div>
  );
}

export default FetchData;

Chapter 18  Integrating Third-Party Services and APIs 



358

Figure 18-5.   Firebase integration with React application

In this example, we successfully integrated Firebase Firestore into 

a React application. We started by installing and initializing Firebase, 

ensuring that our project was correctly configured. Next, we created a 

Firestore collection (products) and added multiple entries manually 

through the Firebase Console. Finally, we retrieved the stored data and 

displayed it dynamically in our React application using Firestore queries. 

By leveraging Firestore, we eliminated the need for a back end while 

ensuring scalability, security, and real-time updates. This approach allows 

applications to store and fetch data seamlessly without managing servers.

�Summary
In this chapter, we explored how to integrate third-party services and 

APIs into React applications to enhance functionality and streamline 

development. We began by discussing the advantages of third-party 

Chapter 18  Integrating Third-Party Services and APIs 



359

services, such as saving development time, ensuring reliability, and 

allowing developers to focus on building unique application features.

We then covered working with REST APIs, showcasing how to fetch 

data using both the Fetch API and the Axios library. Error handling 

techniques, including retry logic and displaying fallback data, were 

introduced to improve reliability and user experience. A practical example 

demonstrated dynamically displaying data while effectively managing 

loading and error states.

The chapter also introduced GraphQL as a more efficient alternative 

to REST for data fetching. Using Apollo Client, we explored how to write 

queries, handle caching, and fetch precise data fields. A detailed example 

illustrated integrating Apollo Client into a React application and executing 

GraphQL queries.

Finally, we walked through integrating Stripe for payment processing. 

The steps included setting up the Stripe provider, creating a secure 

payment form, and processing payments with the createPaymentMethod 

function. The chapter concluded with a practical example that integrated 

a React example with a Firebase database, demonstrating how to build a 

comprehensive app that handles database interaction.

In the next chapter, we will explore advanced component patterns 

to enhance the scalability, maintainability, and flexibility of your React 

applications. Topics will include higher-order components, render props, 

compound components, and controlled vs. uncontrolled components. By 

mastering these patterns, you’ll learn how to create reusable, modular, and 

efficient components for more robust application development.

Chapter 18  Integrating Third-Party Services and APIs 



361© Nitesh Upadhyaya 2025 
N. Upadhyaya, Advanced Front-End Development,  
https://doi.org/10.1007/979-8-8688-1318-4_19

CHAPTER 19

Advanced  
Component Patterns
This chapter delves into advanced component patterns that are vital 

for crafting scalable, maintainable, and flexible React applications. As 

applications grow in complexity, understanding and implementing these 

patterns becomes essential to manage code effectively. These advanced 

techniques empower developers to build reusable, modular, and efficient 

components that simplify development while improving application 

performance and user experience.

By mastering these patterns, developers can tackle intricate UI 

requirements with confidence, reducing redundancy and enhancing 

collaboration within teams. Each pattern discussed in this chapter 

addresses specific challenges faced in large-scale React applications, from 

sharing logic between components to creating dynamic, context- 

aware user interfaces. Whether you’re building a simple feature or 

a comprehensive application, these patterns provide the tools and 

methodologies to achieve optimal results.

In the sections that follow, we will explore Higher-Order Components 

(HOCs), render props, compound components, controlled and 

uncontrolled components, and custom hooks. Through detailed 

explanations and practical examples, you’ll learn how to leverage these 

patterns to design robust and maintainable applications.

https://doi.org/10.1007/979-8-8688-1318-4_19#DOI


362

�Higher-Order Components (HOCs)
Higher-Order Components (HOCs) are advanced React patterns used to 

share functionality between components without duplicating code. They 

are functions that take a component as an argument and return a new 

component with additional behavior or properties. HOCs are particularly 

effective for abstracting logic and reusing it across multiple components, 

promoting cleaner and more maintainable code. For example, consider 

a scenario where you want to log the mounting of various components. 

Instead of adding console.log statements to each component 

individually, you can use an HOC to encapsulate this functionality, as 

demonstrated in Listing 19-1.

HOCs typically wrap components to modify their behavior or inject 

additional props. The example in Listing 19-1 demonstrates a simple HOC 

that logs when a component is mounted.

Listing 19-1.  Logging Higher-Order Component

import React, { useEffect } from "react";

const withLogger = (WrappedComponent) => {
  return function EnhancedComponent(props) {
    useEffect(() => {
      �console.log(`Component mounted: ${WrappedComponent.

displayName || WrappedComponent.name || "Component"}`);
    }, []);

    return <WrappedComponent {...props} />;
  };
};

const ExampleComponent = () => <h2>Hello, World!</h2>;

const EnhancedExample = withLogger(ExampleComponent);

Chapter 19  Advanced Component Patterns 



363

const App = () => {
  return <EnhancedExample />;
};

export default App;

Figure 19-1.  Higher-Order Component example

In this example, the withLogger HOC takes a WrappedComponent as its 

argument and returns a new component (EnhancedComponent). When the 

enhanced component is mounted, a message is logged to the console as 

shown in Figure 19-1. This allows you to easily add logging functionality to 

any component without modifying its implementation.

�Use Cases and Limitations
Higher-Order Components (HOCs) are particularly useful for scenarios 

such as authentication and authorization, where they can ensure that 

only authorized users can access specific components. They are also 

widely used for data fetching, enabling developers to centralize logic and 

share it across multiple components, and for state management, where 

shared state or context can be injected into components. However, despite 

their versatility, HOCs come with certain limitations. They can introduce 

complexity in debugging, especially when multiple HOCs are nested, 

making it difficult to trace component hierarchies. Additionally, wrapping 

Chapter 19  Advanced Component Patterns 



364

components with several HOCs can lead to verbose and cluttered code, 

often referred to as the "wrapper hell" problem, which can reduce code 

readability and maintainability.

�Render Props
Render props is a design pattern that allows components to share logic 

by using a function passed as a prop. Instead of relying on wrapping 

components like HOCs, render props give developers the flexibility to 

define how a component should render based on its logic or state. This 

pattern promotes reusability and simplifies the sharing of state or logic 

between components.

A component implementing the render props pattern typically accepts 

a function as a prop or child. This function is responsible for rendering 

the desired output, based on the state or data managed by the component. 

Listing 19-2 demonstrates how to use the render props pattern effectively.

Listing 19-2.  Mouse Tracker Using Render Props

import React, { useState, useEffect } from "react";

const MouseTracker = ({ children }) => {
  const [position, setPosition] = useState({ x: 0, y: 0 });

  useEffect(() => {
    const handleMouseMove = (e) => {
      setPosition({ x: e.clientX, y: e.clientY });
    };
    window.addEventListener("mousemove", handleMouseMove);
    �return () => window.removeEventListener("mousemove", 

handleMouseMove);
  }, []);

Chapter 19  Advanced Component Patterns 



365

  return children(position); // Using `children` instead of 
`render`
};

const App = () => {
  return (
    <MouseTracker>
      �{(position) => <p>Mouse Position: {position.x}, 

{position.y}</p>}
    </MouseTracker>
  );
}
export default App;

Figure 19-2.  Render prop example

In this example, the MouseTracker component uses the useState 

hook to track the mouse position and updates it whenever the mouse 

moves, using the useEffect hook to manage the event listener. Instead of 

rendering its output directly, the MouseTracker component delegates the 

rendering responsibility to the function passed as children as shown in 

Figure 19-2. This makes the component flexible and reusable, as the parent 

component can define how the mouse position should be displayed.

Chapter 19  Advanced Component Patterns 



366

�Comparing Render Props with HOCs
Render props offer a more explicit and flexible alternative to HOCs. Instead 

of wrapping components, render props allow logic to be shared directly 

within the component’s structure, making it easier to understand and 

control. However, they can sometimes lead to verbose or deeply nested 

code, especially when multiple render prop components are combined. 

For example, compare this pattern to the HOC approach in Listings 19-1 

and 19-2. Render props eliminate the need for wrappers, providing more 

control over rendering, but at the cost of potentially more verbose JSX.

�Compound Components
Compound components are a design pattern in React that allow multiple 

related components to work together to create flexible and reusable 

APIs. Instead of hardcoding relationships between parent and child 

components, compound components communicate implicitly through 

React’s children props or Context API. This pattern is particularly effective 

for building complex, interactive UIs, such as tabs, drop-downs, or form 

wizards, while maintaining clean and declarative code. The following 

example demonstrates the parent-child relationship using the compound 

component pattern. The implementation is detailed in Listing 19-3.

Listing 19-3.  Parent-Child Compound Component Illustration

import React, { useState } from "react";

// Parent Component
const Parent = ({ children }) => {
  const [value, setValue] = useState("Default Value");

  return (
    <div style={{ border: "1px solid black", padding: 

Chapter 19  Advanced Component Patterns 



367

"10px" }}>
      <h2>Parent Component</h2>
      {React.Children.map(children, (child) =>
        �React.cloneElement(child, { value, setValue })  

// Passing props automatically
      )}
    </div>
  );
}

// Child Component
const Child = ({ value, setValue }) => {
  return (
    <div style={{ marginTop: "10px" }}>
      <p>Child received: {value}</p>
      <button onClick={() => setValue("Updated from 
Child")}>Update Parent Value</button>
    </div>
  );
}

const App = () => {
  return (
    <Parent>
      <Child />
    </Parent>
  );
}

export default App;

Chapter 19  Advanced Component Patterns 



368

Figure 19-3.  Compound component example

In this example, the Parent component maintains the state (value) 

and provides it to each Child component using React.cloneElement. 

Each Child receives the current value and a function to update it, ensuring 

all children remain in sync. When a Child component button is clicked, it 

updates the value in the Parent, causing all Child components to re- 

render with the updated state as illustrated in Figure 19-3. This approach 

enables seamless state sharing and coordination between the Parent and 

its child components, without requiring explicit prop drilling.

Compound components offer several advantages that make them 

a powerful pattern for building reusable and flexible UI elements. One 

key benefit is their clean and declarative API, which allows developers 

to define relationships between components using children or the 

Context API. This approach makes the code more intuitive and easier 

to understand and maintain. Additionally, compound components 

reduce coupling by enabling implicit interaction through a shared parent 

context. This minimizes the need for tightly bound dependencies between 

components, resulting in a more modular and maintainable codebase.

Chapter 19  Advanced Component Patterns 



369

�Controlled and Uncontrolled Components
Controlled and uncontrolled components are two approaches for handling 

user input in React. Controlled components rely on React to manage their 

state, ensuring that the component’s value is always synchronized with the 

application’s state. On the other hand, uncontrolled components rely on 

the DOM to manage their state, providing a more straightforward but less 

reactive solution.

Controlled components are ideal for scenarios where React needs to 

manage state and validation, such as complex forms or dynamic input 

fields. Since the component’s state is fully controlled by React, developers 

can easily validate input, track changes, and implement custom logic. 

Conversely, uncontrolled components are more suitable for simple, 

unmanaged inputs or cases where you need to interact with non-React 

libraries. They are quicker to implement for lightweight use cases but offer 

less control over the component’s behavior. Listing 19-4 shows an example 

of both approaches.

Listing 19-4.  Controlled vs. Uncontrolled Input

import React, { useState, useRef } from "react";

// Controlled Component
const ControlledInput = () => {
  const [value, setValue] = useState("");

  return (
    <div>
      <h3>Controlled Input</h3>
      <input
        type="text"
        value={value}
        onChange={(e) => setValue(e.target.value)}
      />

Chapter 19  Advanced Component Patterns 



370

      <p>Current Value: {value}</p>
    </div>
  );
}

// Uncontrolled Component
const UncontrolledInput = () => {
  const inputRef = useRef();

  const handleSubmit = (e) => {
    e.preventDefault(); // Prevent default form submission
    alert(`Entered Value: ${inputRef.current.value}`);
  };

  return (
    <div>
      <h3>Uncontrolled Input</h3>
      <form onSubmit={handleSubmit}>
        <input type="text" ref={inputRef} />
        <button type="submit">Submit</button>
      </form>
    </div>
  );
}

Const App = () => {
  return (
    <div style={{ padding: "20px" }}>
      <ControlledInput />
      <UncontrolledInput />
    </div>
  );
}

export default App;

Chapter 19  Advanced Component Patterns 



371

Figure 19-4.  Controlled and uncontrolled component example

In the ControlledInput component, the value state is updated with 

every keystroke, keeping the input field synchronized with React’s state. 

This makes it easy to implement validations or dynamic behaviors. In 

contrast, the UncontrolledInput component uses a ref to directly access 

the DOM element. The value is retrieved when needed, such as during 

form submission, making this approach less tied to React’s lifecycle as 

shown in Figure 19-4.

�Custom Hooks
Custom hooks are a powerful feature in React that enable developers to 

encapsulate and reuse logic across components. By extracting common 

functionality into custom hooks, developers can reduce redundancy and 

Chapter 19  Advanced Component Patterns 



372

improve code organization. Custom hooks are particularly useful for 

handling state management, API calls, and performance optimizations, 

making them an essential tool for building scalable React applications as 

illustrated in Listing 19-5.

Listing 19-5.  Custom Hook for Fetching Data

import { useState, useEffect } from "react";

const useFetch = (url) => {
  const [data, setData] = useState(null);
  const [loading, setLoading] = useState(true);
  const [error, setError] = useState(null);

  useEffect(() => {
    �let isMounted = true; // Prevents memory leaks if component 

unmounts

    async function fetchData() {
      try {
        �setLoading(true); // Ensure loading state updates on 

new request
        const response = await fetch(url);
        �if (!response.ok) throw new Error(`HTTP Error! Status: 

${response.status}`);

        const result = await response.json();
        if (isMounted) setData(result);
      } catch (err) {
        if (isMounted) setError(err.message);
      } finally {
        if (isMounted) setLoading(false);
      }
    }

Chapter 19  Advanced Component Patterns 



373

    fetchData();

    return () => {
      �isMounted = false; // Cleanup to prevent state updates on 

unmounted component
    };
  }, [url]);

  return { data, loading, error };
}

const App = () => {
  const { data, loading, error } = useFetch("https://
jsonplaceholder.typicode.com/posts");

  if (loading) return <p>Loading...</p>;
  if (error) return <p>Error: {error}</p>;

  return (
    <ul>
 <h2> Custom Hook Fetch Data </h2>
      {data.map((post) => (
        <li key={post.id}>{post.title}</li>
      ))}
    </ul>
  );
}

export default App;

Chapter 19  Advanced Component Patterns 



374

Figure 19-5.  Custom hook fetch data example

In this example, the useFetch hook abstracts the logic for fetching data 

from an API. It initializes states for data, loading, and error using React’s 

useState hook. The useEffect hook runs whenever the url dependency 

changes, triggering an asynchronous function to fetch the data. Errors 

are caught and stored in the error state, while the loading state tracks 

the progress of the fetch request. This hook can be reused across multiple 

components to standardize API interaction and simplify component logic.

�Summary
In this chapter, we explored advanced component patterns that 

empower developers to build scalable, reusable, and maintainable React 

applications. We began with Higher-Order Components (HOCs), which 

provide a way to enhance components by wrapping them with additional 

functionality. We then discussed the render props pattern, which enables 

Chapter 19  Advanced Component Patterns 



375

flexible logic sharing through a function prop. Following that, we covered 

compound components, a powerful pattern for building reusable APIs by 

allowing seamless communication between related components.

Next, we explored the differences between controlled and 
uncontrolled components, understanding when to use each approach for 

managing form inputs and user interactions. We also delved into custom 
hooks, which encapsulate reusable logic, such as state management and 

API calls, to simplify component functionality.

By mastering these advanced patterns, developers can create React 

applications that are modular, maintainable, and efficient, enabling them 

to tackle complex UI requirements with ease. In the next chapter, we 

will apply these patterns and concepts to build a real-world retail store 
application, demonstrating how to integrate React fundamentals with 

real-world requirements.

Chapter 19  Advanced Component Patterns 



377© Nitesh Upadhyaya 2025 
N. Upadhyaya, Advanced Front-End Development,  
https://doi.org/10.1007/979-8-8688-1318-4_20

CHAPTER 20

Building a Real-World 
Retail Store App
Welcome to the final chapter of this book, where we bring everything 

together in an exciting, hands-on project! In this chapter, we’ll build a 

functional retail app that demonstrates how the concepts you’ve learned 

throughout this book come together in a real-world scenario.

This app simulates a simple ecommerce platform and includes the 

following features:

•	 A catalog of products for users to browse

•	 A product details page with more information about 

each item

•	 A shopping cart for users to add, view, and manage 

selected items

•	 A checkout process where users can simulate 

payments using a mock payment gateway

To accomplish this, we’ll use

•	 React Router to create a seamless navigation 

experience.

https://doi.org/10.1007/979-8-8688-1318-4_20#DOI


378

•	 Redux to handle application state, such as managing 

the cart

•	 Stripe to integrate a mock payment system in 

test mode

Rather than overwhelming you with the entire codebase, we’ll walk 

through each feature step by step. You’ll learn how to design reusable 

components, manage application-wide state, and handle navigation 

between different pages. Along the way, we’ll also discuss best practices for 

organizing and structuring your code.

For those eager to dive deeper, the full source code of this app is 

available on our GitHub repository. You can use it to experiment, extend 

the functionality, and explore all the details that we might not cover 

explicitly in this chapter.

By the end of this chapter, you’ll have a fully functional retail app and a 

deeper understanding of how to apply React concepts in a practical, real- 

world project. Let’s dive in and build something amazing!

�Setting Up the Project
To build our retail app, we need to set up the project environment, install 

required dependencies, and organize the folder structure. Follow these 

steps to prepare the groundwork for our app.

	 1.	 Initialize the project
We will use create-react-app to quickly scaffold 

our React project. Run the commands in your 

terminal as illustrated in Listing 20-1.

Listing 20-1.  Initializing the React App

npx create-react-app retail-app
cd retail-app

Chapter 20  Building a Real-World Retail Store App



379

This command creates a new folder named retail-app with all the 

boilerplate code for a React application.

Note E nsure that Node.js and npm (or Yarn) are installed on your 
system. You can verify this by running node -v and npm -v.

	 2.	 Install the required dependencies
To add routing, state management, and payment 

integration, install the dependencies in Listing 20-2.

Listing 20-2.  Installing Required Dependencies

npm install react-router-dom redux react-redux @stripe/stripe- 
js @stripe/react-stripe-js

The react-router-dom library is used to enable seamless navigation 

between pages in our application, allowing users to move between 

product listings, details, the cart, and the checkout process. To manage 

the application-wide state, particularly for features like the shopping cart, 

we will use redux along with react-redux, which provides bindings for 

integrating Redux with React. Additionally, to simulate a payment system, 

we will use @stripe/stripe-js and @stripe/react-stripe-js, which 

facilitate integrating Stripe’s payment gateway in test mode.

�Folder Structure
To keep the project organized and scalable, we’ll structure it as shown 

below. This structure separates reusable components, pages, state 

management (Redux slices), and data into different directories as in 

Figure 20-1.

Chapter 20  Building a Real-World Retail Store App



380

Figure 20-1.  Folder structure

•	 components/: Contains reusable UI components. These 

are independent building blocks, like ProductCard, 

CheckoutForm, and NavBar, which display individual 

product information.

•	 pages/: Contains page-level components, such 

as HomePage, ProductDetailsPage, CartPage, 

CheckoutPage, and ConfirmationPage. Each of these 

represents a route in the application.

•	 redux/: Contains Redux slices for managing global 

state, such as the shopping cart.

•	 data/: Holds static mock data for the products we will 

display in the app. This avoids the need for a back end 

or database.

•	 utils/ (Optional): Helper functions, such as formatting 

utilities, can be added here if needed.

Chapter 20  Building a Real-World Retail Store App



381

�Why This Structure?
This folder structure is designed to promote reusability and scalability:

•	 Modular Organization: Each folder has a clear 

purpose, making it easy to locate and manage files as 

the app grows.

•	 Separation of Concerns: Components, state 

management, and static data are isolated for better 

maintainability.

•	 Future Scalability: If new features are added, such as 

user authentication, they can be easily accommodated 

without restructuring.

�Adding Mock Data
To simulate product listings in our retail app, we will use mock data stored 

locally in a separate file. This approach allows us to focus on building 

and displaying the app’s functionality without requiring a back end or 

database.

�Creating the Mock Data File

	 1.	 Create the data folder:
Inside the src directory, create a folder named data 

to store our mock data.

	 2.	 Create the products.js file:
Inside the data folder, create a file named products.
js and add the following code:

const products = [

Chapter 20  Building a Real-World Retail Store App



382

  �{ id: 1, name: "Laptop", price: 999,  
image: "/images/laptop.jpg" },

  �{ id: 2, name: "Phone", price: 499,  
image: "/images/phone.jpg" },

  �{ id: 3, name: "Headphones", price: 199,  
image: "/images/headphones.jpg" },

  �{ id: 4, name: "Smart Watch", price: 299,  
image: "/images/smart-watch.jpg" },

  �{ id: 5, name: "Tablet", price: 399, image:  
"/images/tablet.jpg" },

  �{ id: 6, name: "Gaming Console", price: 499,  
image: "/images/gaming-console.jpg" },

  �{ id: 7, name: "Wireless Mouse", price: 49,  
image: "/images/wireless-mouse.jpg" },

  �{ id: 8, name: "Bluetooth Speaker",  
price: 149, image: "/images/bluetooth-speaker.jpg" },

  �{ id: 9, name: "External Hard Drive", price: 89, 
image: "/images/external-hard-drive.jpg" },

  �{ id: 10, name: "Camera", price: 599, image:  
"/images/camera.jpg" },

];

export default products;

The mock data includes several key properties for each product. 

The id serves as a unique identifier, ensuring that each product can be 

individually referenced and managed within the app. The name represents 

the product’s title, making it easily recognizable to users. The price 

specifies the cost of the product in USD, providing essential information 

for customers. Lastly, the image property points to the file path of the 

product’s image, which will be stored in the public/images folder. This 

ensures that the app can display visual representations of the products 

alongside their details.

Chapter 20  Building a Real-World Retail Store App



383

�Organizing Product Images
To display product images in our app, store all the image files in the 

public/images directory. Ensure the following image files are saved in the 

directory:

•	 laptop.jpg

•	 phone.jpg

•	 headphones.jpg

•	 smart-watch.jpg

•	 tablet.jpg

•	 gaming-console.jpg

•	 wireless-mouse.jpg

•	 bluetooth-speaker.jpg

•	 external-hard-drive.jpg

•	 camera.jpg

The public folder is accessible from the root of the app, making the 

image paths in the products array (e.g., /images/laptop.jpg) functional 

without any additional configuration. This structure ensures that product 

images are easily accessible and can be displayed seamlessly across the 

application.

�How Mock Data Fits into the App
The mock data will be used to

•	 Populate the product listing on the HomePage

•	 Provide details for the ProductDetailsPage

•	 Enable adding products to the shopping cart

Chapter 20  Building a Real-World Retail Store App



384

This simple, static data source ensures we can focus on front-end 

functionality while maintaining flexibility for future enhancements like 

integrating real APIs. In the next section, we’ll use this mock data to build 

the product listing page and display individual product cards.

�Building Core Pages and Components
In this section, we will create the core pages and components of our retail 

app: the Home Page, the Product Card component, and the Product 
Details Page. These form the foundation of our application, allowing 

users to browse products, view their details, and prepare for the checkout 

process.

�Product Page (Home)
The Home Page is the entry point of the app where users can browse all 

available products in a grid layout. The page dynamically renders each 

product using the reusable ProductCard component. We use the products 

array, imported from the mock data, to list all the products. By iterating 

through this array using the map() function, each product is passed as 

a prop to the ProductCard component. The grid layout is styled using 

Tailwind CSS for a visually appealing arrangement. Listing 20-3 shows the 

implementation of the Home Page.

Listing 20-3.  Home Page: src/pages/HomePage.js

import React from "react";
import products from "./data/product";
import ProductCard from "./components/ProductCard";
import Navbar from "./components/NavBar";

const HomePage = () => {

Chapter 20  Building a Real-World Retail Store App



385

  return (
    <div className="px-6 py-4 max-w-4xl mx-auto">
      <Navbar />
      �<h1 className="text-2xl font-bold text-center mb-6" 

>Products</h1>
      {/* Responsive Grid: Max 2 items per row */}
      <div className="grid grid-cols-1 sm:grid-cols-2 gap-6">
        {products.map((product) => (
          <ProductCard key={product.id} product={product} />
        ))}
      </div>
    </div>
  );
};

export default HomePage;

�Product Card
The ProductCard component is a reusable building block for displaying 

each product’s information. It receives the product object as a prop, 

which contains the product’s name, price, and image. The card uses this 

information to render a product’s details in an attractive, standardized 

layout. Each card also includes a “View Detail” button which takes you 

to the product details page. This component ensures modularity, making 

it reusable across different pages, such as the Home Page and Product 

Details Page. Listing 20-4 shows the implementation of the ProductCard 

component.

Listing 20-4.  Product Card: src/components/ProductCard.js

import React from "react";
import { Link } from "react-router-dom";

Chapter 20  Building a Real-World Retail Store App



386

const ProductCard = ({ product }) => {
  return (
    �<div className="bg-white rounded-lg shadow-md p-4 w-64 flex 

flex-col items-center text-center transform transition 
duration-200 hover:scale-105 hover:shadow-lg">

      {/* Product Image */}
      <img
        src={product.image}
        alt={product.name}
        className="w-full h-44 object-cover rounded-md mb-3"
      />

      {/* Product Name */}
      �<h3 className="text-lg font-semibold text-gray-800"> 

{product.name}</h3>

      {/* Price */}
      �<p className="text-gray-600 text-base mb-3">${product.

price}</p>

      {/* View Details Button */}
      <Link to={`product/${product.id}`} className="w-full">
        �<button className="w-full bg-blue-500 text-white 

px-4 py-2 rounded-md text-sm font-medium transition 
hover:bg- 
blue-600">

          View Details
        </button>
      </Link>
    </div>
  );
};

export default ProductCard;

Chapter 20  Building a Real-World Retail Store App



387

�Product Details Page
The Product Details Page provides detailed information about a selected 

product. This page uses React Router’s useParams hook to retrieve the 

product ID from the URL. The products array is searched to find the 

corresponding product based on the id. If the product is found, its name, 

image, and price are displayed, along with an “Add to Cart” button. If 

no product matches the provided ID, an error message stating “Product 

not found” is displayed. This page demonstrates dynamic routing and 

conditional rendering, making it an essential part of the user experience. 

Listing 20-5 shows the implementation of the Product Details Page.

Listing 20-5.  Product Details Page: src/pages/
ProductDetailsPage.js

import React from "react";
import { useParams, useNavigate } from "react-router-dom";
import { useDispatch } from "react-redux";
import { addToRetailCart } from "../../store/retailCartSlice";
import { toast } from "react-toastify";
import products from "./data/product";
import Navbar from "./components/NavBar";

const ProductDetailsPage = () => {
  const { id } = useParams();
  const navigate = useNavigate();
  const dispatch = useDispatch();
  const product = products.find((p) => p.id === parseInt(id));

  if (!product) return <h2 className="text-center text-red-500 
text-xl">Product not found</h2>;

  const handleAddToCart = () => {
    dispatch(addToRetailCart(product));

Chapter 20  Building a Real-World Retail Store App



388

    toast.success(`${product.name} added to cart!`);
  };

  return (
    <div className="bg-gray-100">
      <Navbar />
      <div className="flex flex-col items-center px-4 py-6">
        �<div className="flex flex-col md:flex-row items-center 

bg-white shadow-lg rounded-lg p-6 max-w-3xl w-full">
          {/* Product Image */}
          <img
            src={product.image}
            alt={product.name}
            �className="w-64 h-64 object-cover rounded-lg 

border-2 border-gray-300 mb-4 md:mb-0 md:mr-6"
          />

          {/* Product Info */}
          �<div className="flex flex-col items-center md: 

items-start text-center md:text-left">
            �<h1 className="text-2xl font-bold text-

gray-800">{product.name} Details</h1>
            <p className="text-xl text-gray-600 my-2">
              Price: <strong>${product.price}</strong>
            </p>

            {/* Buttons */}
            �<div className="flex flex-col md:flex-row gap-4 

mt-4 w-full">
              <button
                onClick={handleAddToCart}
                �className="bg-green-500 text-white px-5 py-3 

rounded-lg w-full md:w-auto text-lg font-medium 
transition hover:bg-green-600"

Chapter 20  Building a Real-World Retail Store App



389

              >
                  Shop
              </button>
              <button
                onClick={() => navigate(-1)}
                �className="flex items-center text-blue-500 

hover:text-blue-700"
              >
                ← Back
              </button>
            </div>
          </div>
        </div>
      </div>
    </div>
  );
};

export default ProductDetailsPage;

These core pages and components establish the user interface for 

browsing and interacting with products. In the next section, we will 

implement shopping cart functionality using Redux to enable state 

management across the app.

�State Management with Redux
In this section, we will implement state management in our app using 

Redux. Redux allows us to manage global application state, such as the 

shopping cart, making it easier to share data between components. We will 

define a Redux store and Redux slice for managing cart functionality and 

connect it to our React application.

Chapter 20  Building a Real-World Retail Store App



390

�Setting Up Redux
To set up Redux, we need to define the state and actions for the shopping 

cart and integrate Redux with our React app.

�1. Creating the Store
The store.js file in Listing 20-6 will configure the Redux store and 

combine all the reducers. This is particularly useful when you have 

multiple slices for managing different parts of the state.

Listing 20-6.  Creating store.js: src/redux/store.js

import { configureStore } from '@reduxjs/toolkit';
import retailCartReducer from "./retailCartSlice";

const store = configureStore({
  reducer: {
    retailCart: retailCartReducer,
  },
});

export default store;

The configureStore function is used to create the Redux store with 

the required reducers. In this setup, the retailCartReducer is included 

under the retailCart key in the reducer object, allowing the store to 

manage the cart’s state. By creating a dedicated store.js file, we establish 

a centralized entry point for managing all reducers. This setup simplifies 

state management, making it easier to add additional slices, such as 

userSlice or productSlice, in the future. This approach also enhances 

scalability, ensuring that the Redux store remains easy to configure and 

maintain as the application grows in complexity.

Chapter 20  Building a Real-World Retail Store App



391

�2. Creating the Retail Slice
The retailCartSlice will handle all cart-related actions, such as adding 

items to the cart, updating quantities, and removing items. This is 

implemented using the createSlice utility from Redux Toolkit, which 

simplifies the process of managing state and actions. In the src/redux 

folder, create a file named retailCartSlice.js and add the code shown 

in Listing 20-7.

Listing 20-7.  Cart Slice: src/redux/retailCartSlice.js

import { createSlice } from '@reduxjs/toolkit';

// Load cart from localStorage to persist state
const loadCartFromStorage = () => {
  try {
    const cartData = localStorage.getItem("retailCart");
    return cartData ? JSON.parse(cartData) : [];
  } catch (error) {
    console.error("Error loading cart from 
localStorage:", error);
    return [];
  }
};

const initialState = {
  retailCart: loadCartFromStorage(), // Separate cart for 
retail app
};

const retailCartSlice = createSlice({
  name: 'retailCart',
  initialState,
  reducers: {

Chapter 20  Building a Real-World Retail Store App



392

    addToRetailCart: (state, action) => {
      �const existingItem = state.retailCart.find((item) => 

item.id === action.payload.id);
      if (existingItem) {
        existingItem.quantity += 1;
      } else {
        �state.retailCart.push({ ...action.payload, 

quantity: 1 });
      }
      �localStorage.setItem("retailCart", JSON.stringify(state.

retailCart));  // Save to separate localStorage key
    },
    removeFromRetailCart: (state, action) => {
      �state.retailCart = state.retailCart.filter((item) => 

item.id !== action.payload.id);
      �localStorage.setItem("retailCart", JSON.stringify 

(state.retailCart));
    },
    clearRetailCart: (state) => {
      state.retailCart = [];
      �localStorage.removeItem("retailCart");  // �Clear only 

retail cart
    },
  },
});

export const { addToRetailCart, removeFromRetailCart, 
clearRetailCart } = retailCartSlice.actions;
export default retailCartSlice.reducer;

Chapter 20  Building a Real-World Retail Store App



393

The retail cart slice begins with an initial state where the items array 

is empty, representing an empty shopping cart. The reducers within the 

slice handle the cart’s primary actions. The addToRetailCart reducer 

adds a new item to the cart or increments the quantity of an existing item 

if it is already in the cart. The removeFromRetailCart reducer, on the 

other hand, removes an item from the cart by filtering out the item with 

the specified ID. Both reducers ensure that the cart’s state is managed 

dynamically based on user actions. Finally, the addToRetailCart and 

removeFromRetailCart actions are exported from the slice, making them 

accessible for use in the app’s components to interact with the cart’s state 

effectively.

�3. Connecting Redux to the App
To use the cart slice, we need to set up the Redux store and provide it to the 

React app. The store will manage the global state and make it accessible to 

all components. Update the src/index.js file as shown in Listing 20-8.

Listing 20-8.  Connecting Redux Store: src/index.js

import React from "react";
import ReactDOM from "react-dom";
import { Provider } from "react-redux";
import store from "./redux/store";
import App from "./App";

ReactDOM.render(
  <Provider store={store}>
    <App />
  </Provider>,
  document.getElementById("root")
);

Chapter 20  Building a Real-World Retail Store App



394

The Redux store is created using the configureStore function, which 

initializes the store with the retailCartReducer. This reducer manages 

the cart’s state, handling actions such as adding or removing items. To 

make the Redux store accessible throughout the application, the Provider 

component from react-redux is used. By wrapping the App component 

with the Provider, the store is passed down to all child components, 

enabling them to access and interact with the global state seamlessly. This 

setup ensures efficient state management across the app.

Now that Redux is set up, we can integrate the cart functionality into 

our app. In the next section, we will build the Cart Page, which will display 

the items in the cart, along with options to update quantities or remove 

items. Finally, we will integrate the Checkout Page with Stripe to enable 

a simulated payment process. This will complete the core functionality of 

our retail app.

�Checkout with Stripe
In this section, we will implement a checkout process for our app, 

enabling users to add items to their cart and proceed to checkout. Using 

Stripe’s test mode, we will simulate payment functionality. Finally, we 

will create the Cart Page, Checkout Page, and Checkout Form to handle 

payment processing.

�1. Installing Stripe Dependencies
Before integrating Stripe, ensure the required libraries are installed. These 

libraries enable secure payment handling and integration with Stripe’s API 

as shown in Listing 20-9.

Chapter 20  Building a Real-World Retail Store App



395

Listing 20-9.  Installing Stripe Libraries

npm install @stripe/stripe-js @stripe/react-stripe-js

This command installs the core Stripe library (@stripe/stripe-js) 

and its React integration (@stripe/react-stripe-js), which we will use 

to build the payment form.

�2. Cart Page
The Cart Page enables users to review their selected items, adjust 

quantities, and remove products before proceeding to checkout. Serving as 

a crucial step between adding items to the cart and finalizing a purchase, 

it enhances the overall shopping experience. In this section, we will 

implement the Cart Page and integrate it with Redux to manage the cart 

state efficiently. Additionally, it will display the total price and include a 

Checkout button, as illustrated in Listing 20-10.

Listing 20-10.  Cart Page: src/pages/CartPage.js

import React from "react";
import { useSelector, useDispatch } from "react-redux";
import { removeFromRetailCart, clearRetailCart } from "../../
store/retailCartSlice";
import { useNavigate } from "react-router-dom";

const CartPage = () => {
  �const cart = useSelector((state) => state.retailCart.
retailCart);

  const dispatch = useDispatch();
  const navigate = useNavigate();

  const handleRemove = (id) => {
    dispatch(removeFromRetailCart({ id }));

Chapter 20  Building a Real-World Retail Store App



396

  };

  const handleContinueShopping = () => {
    navigate("/example/34/"); // Redirect back to product page
  };

  �const totalPrice = cart.reduce((total, item) => total + item.
price * item.quantity, 0);

  return (
    �<div className="flex flex-col items-center bg-gray-100 

py-8 px-4">
      �<h1 className="text-3xl font-bold text-gray-800 mb-6"> 

Your Cart</h1>

      {cart.length === 0 ? (
        �<div className="bg-white shadow-md p-6 rounded-lg 

text-center">
          �<p className="text-gray-600 text-lg">Your cart is 

empty. Start shopping now!</p>
          <button
            �className="mt-4 px-6 py-3 bg-blue-500 text-

white font-medium rounded-lg hover:bg-blue-600 
transition"

            onClick={handleContinueShopping}
          >
              Continue Shopping
          </button>
        </div>
      ) : (
        �<div className="w-full max-w-3xl bg-white shadow-lg 

rounded-lg p-6">
          {/* Cart Items List */}

Chapter 20  Building a Real-World Retail Store App



397

          <div className="space-y-6">
            {cart.map((item) => (
              �<div key={item.id} className="flex items-center 

justify-between bg-gray-100 p-4 rounded-lg 
shadow-sm">

                �<img src={item.image} alt={item.name} 
className="w-20 h-20 object-cover rounded-md 
border" />

                {/* Added fixed width here */}
                <div className="w-64 ml-4">
                  �<h3 className="text-lg font-semibold  

text-gray-700">{item.name}</h3>
                  �<p className="text-gray-600">Qty: {item.

quantity}</p>
                  �<p className="text-gray-800 font-bold">$ 

{(item.price * item.quantity).toFixed(2)} 
</p>

                </div>

                {/* Remove button no longer stretches */}
                <button
                  �className="px-3 py-2 w-24 bg-red-500  

text-white rounded-md hover:bg-red-600 
transition text-sm font-medium"

                  onClick={() => handleRemove(item.id)}
                >
                    Remove
                </button>
              </div>
            ))}
          </div>

Chapter 20  Building a Real-World Retail Store App



398

          {/* Total Price */}
          �<h2 className="text-2xl font-bold text-gray-900 mt-6 

text-center">Total: ${totalPrice.toFixed(2)}</h2>

          {/* Buttons */}
          �<div className="flex flex-col sm:flex-row gap-4 mt-6 

justify-center">
            <button
              �className="px-6 py-3 bg-gray-500 text-white  

font-medium rounded-lg hover:bg-gray-600 
transition w-full sm:w-auto"

              onClick={() => dispatch(clearRetailCart())}
            >
                Clear Cart
            </button>
            <button
              �className="px-6 py-3 bg-blue-500 text-white  

font-medium rounded-lg hover:bg-blue-600 
transition w-full sm:w-auto"

              onClick={handleContinueShopping}
            >
                Continue Shopping
            </button>
            <button
              �className="px-6 py-3 bg-green-500 text-white 

font-medium rounded-lg hover:bg-green-600 
transition w-full sm:w-auto"

              onClick={() => navigate("/example/34/checkout")}
            >
                Checkout
            </button>
          </div>

Chapter 20  Building a Real-World Retail Store App



399

        </div>
      )}
    </div>
  );
};

export default CartPage;

The Cart Page integrates seamlessly with Redux to manage and display 

cart items. The useSelector hook retrieves the list of cart items from the 

Redux store, ensuring the page dynamically reflects the current state of the 

cart. The useDispatch hook is used to dispatch the removeFromRetailCart 

action, enabling users to remove items from the cart with ease. The 

total price is calculated dynamically by iterating over the cart items and 

summing up the product of each item’s price and quantity using the 

reduce() method, providing users with an accurate total cost.

The page is designed to handle both empty and populated cart states 

effectively. If the cart is empty, a user-friendly message is displayed, 

along with a link to return to the Product Home Page to continue 

shopping. If there are items in the cart, they are presented in a detailed 

list, showing the product name, quantity, price, and an option to remove 

items. Additionally, a “Checkout” button is provided, linking users to the 

Checkout Page (/checkout), where they can finalize their purchase. This 

structured design ensures a smooth and intuitive shopping.

�3. Creating the Checkout Page
The Checkout Page in Listing 20-11 is where users can review their cart 

items and input payment details. It uses Stripe’s Elements component 

to provide the payment context to its child components, such as the 

Checkout Form.

Chapter 20  Building a Real-World Retail Store App



400

Listing 20-11.  Checkout Page: src/page/CheckoutPage.js

import React from "react";
import { useSelector } from "react-redux";
import { Elements } from "@stripe/react-stripe-js";
import { loadStripe } from "@stripe/stripe-js";
import CheckoutForm from "./components/CheckoutForm";

const stripePromise = loadStripe("your-stripe-public- 
key-here");

const CheckoutPage = () => {
  �const cart = useSelector((state) => state.retailCart.
retailCart);

  �const totalPrice = cart.reduce((total, item) => total + item.
price * item.quantity, 0);

  return (
    �<div className="min-h-screen flex flex-col items-center bg- 

gray-100 py-10 px-4">
      �<h1 className="text-3xl font-bold text-blue-600 

mb-4">Checkout</h1>
      �<h2 className="text-xl font-semibold text-gray-700 

mb-6">Total: ${totalPrice.toFixed(2)}</h2>

      {/* Stripe Elements Wrapper */}
      �<div className="w-full max-w-md bg-white shadow-md 

rounded-lg p-6">
        <Elements stripe={stripePromise}>
          <CheckoutForm />
        </Elements>
      </div>

Chapter 20  Building a Real-World Retail Store App



401

    </div>
  );
};

export default CheckoutPage;

The Checkout Page serves as the entry point for the payment process. 

It initializes Stripe using the loadStripe function and wraps the payment 

form in the Elements component, which provides a secure Stripe context. 

By encapsulating the checkout form within the Stripe environment, 

we ensure that sensitive payment details are handled securely and in 

compliance with industry standards.

�4. Creating the Checkout Form
The CheckoutForm component in Listing 20-12 handles the payment 

form and submission logic. Users can input their card details using Stripe’s 

CardElement.

Listing 20-12.  Checkout Form: src/components/CheckoutForm.js

import React, { useState } from "react";
import { useStripe, useElements, CardElement } from "@stripe/
react-stripe-js";
import { useDispatch } from "react-redux";
import { clearRetailCart } from "../../../store/
retailCartSlice";
import { useNavigate } from "react-router-dom";

const CheckoutForm = () => {
  const stripe = useStripe();
  const elements = useElements();
  const dispatch = useDispatch();
  const navigate = useNavigate();

Chapter 20  Building a Real-World Retail Store App



402

  const [isProcessing, setIsProcessing] = useState(false);
  const [message, setMessage] = useState("");

  const handleSubmit = async (event) => {
    event.preventDefault();

    if (!stripe || !elements) {
      return;
    }

    setIsProcessing(true);

    �// Mock Payment Intent (replace with backend API call in 
real-world)

    setTimeout(() => {
      setIsProcessing(false);
      dispatch(clearRetailCart());
      navigate("/example/34/confirmation");
    }, 2000);
  };

  return (
    �<form onSubmit={handleSubmit} className="bg-white shadow-lg 

rounded-lg p-6 max-w-md w-full">
      �<h2 className="text-xl font-semibold text-gray-800 

mb-4">Enter Payment Details</h2>

      {/* Card Element Wrapper */}
      �<div className="border border-gray-300 rounded-md 

p-3 mb-4">
        �<CardElement className="w-full" />
      </div>

      {/* Payment Button */}
      <button

Chapter 20  Building a Real-World Retail Store App



403

        type="submit"
        disabled={!stripe || isProcessing}
        �className={`w-full py-3 rounded-md text-white font- 

semibold transition ${
          �isProcessing ? "bg-gray-400 cursor-not-allowed" : 

"bg-blue-500 hover:bg-blue-600"
        }`}
      >
        {isProcessing ? "Processing..." : "  Pay Now"}
      </button>

      {/* Error Message */}
      �{message && <p className="text-red-600 text-center 

mt-3">{message}</p>}
    </form>
  );
};

export default CheckoutForm;

The CheckoutForm component handles the user interaction for 

entering payment details and submitting the payment. It uses Stripe’s 

CardElement component, which provides a secure and customizable input 

field for credit card information. The useStripe and useElements hooks 

simplify interaction with Stripe’s API. To provide a better user experience, 

the isProcessing state is used to disable the form during submission, 

preventing multiple payments. Figure 20-2 shows the Cart Page.

Chapter 20  Building a Real-World Retail Store App



404

Figure 20-2.  Cart Page illustration

�Routing
Routing is an essential part of our app, enabling users to navigate between 

different pages seamlessly. In this section, we will set up routes for our 

application using React Router. The routes will allow users to access the 

Home Page, the Product Details Page, and, later, additional pages like the 

Cart Page and Checkout Page.

�Adding Routes
To enable routing, we use react-router-dom to define the paths for different 

components. We’ll configure routes in the src/App.js file, as shown in 

Listing 20-13.

Chapter 20  Building a Real-World Retail Store App



405

Listing 20-13.  Setting Up Routes in src/App.js

import { BrowserRouter as Router, Routes, Route } from "react- 
router-dom";
import HomePage from "./pages/HomePage";
import ProductDetailsPage from "./pages/ProductDetailsPage";
import CartPage from "./pages/CartPage";
import CheckoutPage from "./pages/CheckoutPage";

const App = () => (
  <Router>
    <Routes>
      <Route path="/" element={<HomePage />} />
      �<Route path="/product/:id" element={<Product 

DetailsPage />} />
      <Route path="/cart" element={<CartPage />} />
      <Route path="/checkout" element={<CheckoutPage />} />
    </Routes>
  </Router>
);

export default App;

	 1.	 React Router Setup

•	 The Router component wraps the application 

and enables routing. It ensures that the routes 

defined within the app are properly handled by 

React Router.

	 2.	 Routes

•	 The Routes component contains all the defined 

Route components, each specifying a path and the 

corresponding component to render.

Chapter 20  Building a Real-World Retail Store App



406

	 3.	 Home Page Route

•	 The / path is linked to the HomePage component, 

allowing users to view the list of products as soon as 

they open the app.

	 4.	 Product Details Route

•	 The /product/:id path is linked to the 

ProductDetailsPage component. The :id is a 

dynamic segment, allowing React Router to pass 

the product ID from the URL to the component via 

useParams.

	 5.	 Dynamic Navigation

•	 With this setup, users can navigate to a specific 

product’s details by visiting a URL such as /
product/1, where 1 corresponds to the product ID.

�Deployment
In this section, we will deploy our React app to a hosting provider, 

making it accessible to users. We’ll focus on deploying the app to popular 

platforms like Netlify, which offer seamless integration for modern 

web apps.

�1. Building the App
Before deploying, we need to create an optimized production build of the 

application. This is done using the following command.

�Build the App

npm run build

Chapter 20  Building a Real-World Retail Store App



407

The npm run build command generates a build folder in the project 

directory, which contains all the static files necessary for deployment. 

These files include minified JavaScript, optimized CSS, and other assets 

that are ready for production use. It is important to ensure there are no 

errors during the build process. If any issues occur, carefully review the 

console output, identify the problems, and resolve them before proceeding 

with the deployment.

�2. Deploying to Netlify
�Step 1: Sign Up/Log In to Netlify

•	 Visit Netlify and create an account if you don’t already 

have one.

•	 Once logged in, go to the Netlify dashboard.

�Step 2: Create a New Site

•	 Click the “Add New Site” or “New Site from Git” button.

•	 You can either connect a GitHub repository or 

manually upload the build folder.

�Step 3: Manual Deployment

•	 If you prefer manual deployment

	 1.	 Drag and drop the build folder into the Netlify 

dashboard.

	 2.	 Netlify will process the files and generate a 

unique URL for your app.

Chapter 20  Building a Real-World Retail Store App

https://www.netlify.com/


408

�Step 4: Configure the Domain (Optional)

•	 You can configure a custom domain for your app by 

linking it to Netlify from the domain settings.

�3. Testing the Deployed App
After deploying, open the provided URL (e.g., https://your-app-name.
netlify.app) in your browser and test the app. Ensure the following 

features work correctly:

•	 Navigation between pages

•	 Adding items to the cart and updating quantities

•	 Proceeding to the checkout and completing a payment 

simulation

�Summary
Congratulations on reaching the end of this book! Together, we’ve built 

a fully functional retail app, incorporating essential concepts of React, 

Redux for state management, routing with React Router, and a seamless 

checkout experience using Stripe. Throughout this journey, we’ve walked 

through the key steps required to create a robust, modern web application 

while emphasizing modularity, scalability, and best practices in React 

development.

For the complete source code, you can access the GitHub repository. 

This project is just the beginning—you now have a solid foundation to 

build upon. Consider extending the app by adding advanced features 

such as filtering and sorting products, implementing search functionality, 

Chapter 20  Building a Real-World Retail Store App

https://your-app-name.netlify.app
https://your-app-name.netlify.app


409

or persisting the cart data using localStorage or a back-end service. 

These enhancements will not only improve the app but also deepen your 

understanding of full-stack development.

Thank you for following along, and we hope this book has empowered 

you to create even more dynamic and interactive applications in the future. 

Happy coding!

Chapter 20  Building a Real-World Retail Store App



411© Nitesh Upadhyaya 2025 
N. Upadhyaya, Advanced Front-End Development,  
https://doi.org/10.1007/979-8-8688-1318-4

Index

A
Accessibility, 144

challenges, 302
definition, 302
form, 304–306
implementation, 303–307
principles, 301
testing, 164, 307 (see also 

Testing accessibility)
Accessible Rich Internet 

Applications (ARIA), 
302, 303

Add-to-cart functionality, 123–125
Apollo Client, 337, 347
App component, 4–6, 10, 58, 394
ARIA, see Accessible Rich Internet 

Applications (ARIA)
Array indices, 110
Assistive technologies, 303, 307
Asynchronous validation, 224
Authentication, 287, 288
Automated testing

accessibility, 308–310
CI/CD process, 330, 331

AWS Amplify, 317, 323
Axe DevTools, 301, 307, 316
Axios, 337, 342–344
axios.get() method, 344

B
Backend-as-a-Service (BaaS), 355
Block Element Modifier (BEM), 

164, 165
Blog application, 241, 245
Bootstrap, 143, 159, 161, 162
Bracket Pair Colorizer, 36
Broadcast data, 184
Broken authentication, 299
BrowserRouter component, 

230, 231
Build directory structure, 321, 322
Burp Suite, 299
Button component, 4, 128

C
Callback functions, 57, 250
Calling functions, 75, 76
CardElement component, 354
cart.map function, 201
Cart page, 395–399, 404
Checkout form, 220–224, 401–403
Checkout page, 399–401
CI/CD, see Continuous integration 

and deployment (CI/CD)
Class components, 4, 46, 47, 53, 55, 

92, 93, 128, 132

https://doi.org/10.1007/979-8-8688-1318-4#DOI


412

Class name collisions, 146
Cleanup function, 177–180
Client-side validation, 212–214
Code bloat, 161
Code minification, 319
Code splitting, 252, 253
Complex data structures, 113–115
Component-based approach

advantages, 128
best practices, 135
challenges, 140, 141
create, 44
definition, 43
designing shopping cart page

CartSummary 
component, 138

composing page, 138
header component, 136
modular components, 136
output, 140
product component, 137
ProductList component, 137

folder structure, 44
props, 48–51
reusability and composition, 

133, 134
steps, 129–131
types, 44–47, 131, 132
understanding, 127, 128

Component-based 
architecture, 3–7

componentDidCatch method, 169
componentDidMount, 16, 170, 174
componentDidUpdate, 16, 171

componentWillUnmount, 171
Composition, 133, 134
Compound components, 366–368
Conditional rendering, 12, 75, 80, 

85, 89, 90, 104, 387
user experience, 96
using if statements, 96, 97
using logical && operator, 98
using ternary operator, 97

configureStore function, 189, 190, 
390, 394

Conflict-free approach, 151
Consistency, 160, 164
constructor, 170
Context API, 193, 254
Continuous integration and 

deployment (CI/CD), 317
automated testing and linting, 

330, 331
definition, 326
GitHub Actions, 326–330
pipelines, 298, 318
workflow configuration, 327
workflow file location, 327

Contrast ratios, 144, 164
Controlled components, 203–205, 

207, 369–371
Counter slice, 191
createPaymentMethod function, 

354, 359
Create-react-app tool

configuration, 25
create first React app, 25, 26
file structure, 27, 28

INDEX



413

initial terminal output, 26
running development 

server, 28–30
stopping server, 30
success message, 26
terminal output, 29
understanding project 

structure, 27, 28
Credit card numbers, 294, 295
Cross-Site Request Forgery (CSRF), 

281, 282, 292, 293
Cross-Site Scripting (XSS), 281, 

282, 285, 299
CSRF, see Cross-Site Request 

Forgery (CSRF)
CSRF token implementation, 293
CSS-in-JS libraries

definition, 152
dynamic styling, 153, 154
styled-components and 

emotion, 152
template literals, 153
theming support, 154, 155

CSS media queries, 144, 161
CSS modules

advantages, 151
definition, 149
disadvantages, 151
implementation, 150, 151

CSS styling, 104
Custom Hooks, 15, 16, 371–374
Cyber threats, 299
Cypress, 267, 269, 273, 274, 279
cy.visit function, 274

D
Data protection

encryption, 293, 294
masking sensitive information, 

294, 295
Data Source Name (DSN), 333
Declarative navigation, 233
Declarative programming 

paradigm, 71
Declarative syntax

defined, 11
reasons, 12

Default props, 51, 57, 58
Dependency management, 

295–296, 300
Deployment

building app, 407
considerations, 317
creating build process, 321, 322
environment variables, 320, 321
Netlify, 323, 324, 407, 408
optimization, 319, 320
platforms, 317, 323
security, 296, 297
testing, 408
Vercel, 324, 325
workflow process, 328

Destructure props, 57
Diffing, 8, 10, 248
Document Object Model (DOM), 8
DOMPurify, 284, 285
DOMPurify.sanitize function, 285
Dynamic lists, 111–113

INDEX



414

Dynamic parameter with 
useParams, 232

Dynamic routing, 232, 234,  
244, 245, 387

Dynamic styling, 148, 153, 154

E
Encryption, 293, 294
End-to-end (E2E) testing, 

266, 272–274
Environment variables, 320, 321
Error handling, 239, 241, 344, 346
Error tracking

needs, 331, 332
Sentry, 332–334

ES7 React, 36
Escaping output, 285–287
ESLint, 36, 297, 298
Event handling

class components, 92, 93
combined event, 209, 211
definition, 90
form submission and logout 

actions, 104–106
functional components, 90, 91
onChange event, 207, 208
onSubmit event, 208, 209
passing parameters

arrow functions, 94
conditional rendering, 96–98
context-specific actions, 93
multiple parameters, 95
user greeting, 94

Event object, 211

F
Fallback mechanism, 239
Fetch API, 337, 339, 341, 342
fetch.mockResolvedValueOnce() 

function, 278
fetchProducts function, 260
filter() method, 111
Firebase, 337, 338, 355–358
Firestore, 355, 358
FixedSizeList component,  

122, 257
Focus management, 303, 307
Folder structure, 379, 380
Formatjs, 311
Formik, 216–218
Form validation

client-side validation, 212–214
real-time validation, 214, 215

Fragments, 69, 78, 79
Functional components, 4, 44, 46, 

52, 53, 90, 91, 128, 132

G
Generic designs, 161
Git

configuration, 38
download and installation, 37
repository, 38, 39
workflow

commit changes, 39, 40
push to remote 

repository, 40
stage changes, 39, 40

INDEX



415

GitHub Actions, 298, 326–330
GitLens, 36
Global styles, 154, 165
Google Maps, 339
GraphQL, 36, 337

definition, 347
fetching data, 350
setting up, 347, 348
states, 350
writing and using queries, 348

Grid system, 162, 163

H
handleChange function, 215
handleMouseEnter function, 262
handleSubmit function, 224
Higher-order components 

(HOCs), 16, 249
example, 363
functionality, 362
logging, 362
use cases and limitations, 363

HMR, see Hot module 
replacement (HMR)

HOCs, see Higher-order 
components (HOCs)

Hooks, 44
challenges and solutions, 179
functional components, 172
lifecycle scenarios, 175, 176
timer component, 176–179
useEffect, 172, 174
useState, 174, 175

Hot module replacement 
(HMR), 34

HTTPS, see HyperText Transfer 
Protocol Secure (HTTPS)

HyperText Transfer Protocol 
Secure (HTTPS), 291

I
Image optimization, 320
Images

lazy loading, 257
responsive, 258

Immutable updates, 111
Imperative approach, 11
Infinite loops, 179, 180
Inline styling, 164

advantages, 148, 149
definition, 147
disadvantages, 149
JSX, 79
properties, 148

Insecure API endpoints, 283
Integration testing, 266, 271, 272
Interactive login form, 100–105
Internationalization (i18n)

applications, 310
concepts, 301
definition, 302
folder structure, locales and 

i18n.js, 313
implementation, 310
react-i18next, 311–315

Intuitiveness, 143

INDEX



416

J
JavaScript expressions, 70

calling functions, 75, 76
conditional rendering, 75
embedding variable, 74

JavaScript XML (JSX), 132
advantage, 68
applying CSS classes, 79
definition, 67
expressions, 74–76
fragments for grouping 

elements, 78, 79
inline styling, 79
invalid and valid expression, 68
logical && operator, 80
props, 76, 77
rendering elements, 71–74, 81
rules, 68–71
self-closing expression, 70
snippet, 68
spread attributes, 80
user dashboard, 81–86

Jenkins, 298
Jest, 267, 268
Jest-axe, 301, 308
jest-fetch-mock library, 277
JSON Web Tokens (JWT), 287, 292
JSX expressions, 71

K
Keyboard navigation, 303
Keys

defined, 107, 109

management, 119
mistakes, 110
unique and stable 

identifiers, 110

L
Lack of reusability, 149
Lazy loading, 122, 237–239, 252, 

253, 257, 319
Lifecycle, React

class components, 169–172
management, 180
methods, 167
phases, 167, 168

mounting, 168–170
unmounting, 169, 171, 172
updating, 168, 171

Lighthouse, 301, 308
Linting, 330, 331
Lists

add and remove items, 112
add-to-cart 

functionality, 123–125
data collection, 107
dynamic items, 111–113
lazy loading, 120
management, 119
nested lists and complex data 

structures, 113–115
recursion, 116–118
rendering, 108
rendering objects, 108, 109
virtualization, 121, 122

INDEX



417

loadStripe function, 352, 401
Localization, 302
LogRocket, 318, 332
Long-term support (LTS), 22

M
map() function, 111, 384
Masking sensitive data, 294, 295
Media, 257, 258
Media queries, 161, 164
Memoization, 247
Mock data, 381, 382

usage, 383, 384
Mocking, 276–279
Mocking API calls, 277–279
Monitoring tools, see Error tracking
Mounting phase, 168–170
MouseTracker component, 365
Multilingual React component, 

313, 315

N
Navigation, 233, 234, 303
Nested lists, 113–115
Nested routes, 234–236
Nested state structures, 254
Netlify, 317, 323, 324, 327, 329, 

407, 408
Network performance

prefetching data, 261, 262
React Query, 259, 260

New Relic, 332

Node.js
download and installing, 22
output, 23
updating, 24
verify installation, 23
version, 22

Node Package Manager 
(npm), 22, 24

Node Version Manager (nvm), 24
NotFound component, 240
npm audit fix command, 295

O
OAuth, 287
onBlur event, 209, 210
onChange event, 207, 208
onFocus event, 209, 210
onSubmit event, 208, 209
Optimization, deployment, 

319, 320
Over-componentization, 140
OWASP ZAP, 299

P, Q
Parent-child relationships, 113, 366
Payment form, 352–354
Payment gateway, 351–354
Penetration testing, 298, 299
Performance bottlenecks

identification tools, 249
symptoms, 248
user experience, 248

INDEX



418

Performance optimization
bottlenecks (see Performance 

bottlenecks)
challenges, 247
code splitting and lazy loading, 

252, 253
images and media, 257, 258
large lists, 255–257
network performance, 259–262
preventing unnecessary 

re-renders, 249–252
state management, 254, 255
virtual DOM, 247

Personally identifiable information 
(PII), 283

PII, see Personally identifiable 
information (PII)

Post-deployment maintenance, 318
Prefetching data, 261, 262
Preprocessors (SCSS/SASS)

features
functions and 

operations, 158
mixins, 157
nesting, 156
variables, 156

installing, 158
streamline styling 

workflows, 155
Prettier, 36
ProductCard component, 385
ProductDetails component, 239
Product details page, 387–389
Product images, 383, 384

ProductItem component, 130
ProductList component, 130
Product page (home), 384
Programmatic navigation, 233
Prop drilling, 184, 186
Props, 48–51, 76, 77

best practices, 57, 58
vs. state, 56

ProtectedRoute component, 237
Protected routes, 236, 237
Pseudo-classes, 153

R
RBAC, see Role-based access 

control (RBAC)
React app

accessibility, 303–307
component-based 

architecture, 3–7
components, 2
deploy (see Deployment)
frameworks, 17
history, 3
initializing project, 378
inline styling, 147–149
internationalization, 310–315
lifecycle (see Lifecycle, React)
state management, 183, 184
structure, 18
styling, 143–145
virtual DOM, 7–11

React Context API, 183–186
React development

INDEX



419

recommended extensions, 36
VS Code, 35

ReactDOM.render method, 72
React Hook Form, 218, 219
React Hooks, 3, 167

concepts, 13–15
counter example, 14
custom, 15, 16
reasons, 13
side effects, 13

React-i18next, 310–315
React Intl, 311
React.lazy function, 252
React.memo, 249, 250
React-Native Snippets, 36
React Profiler, 247
React Query, 259, 260
React-redux, 187, 196, 379, 394
React Router, 19

blog application, 245
built-in mechanisms, 239
concepts, 231–234
configuration, 230
declarative approach, 229
definition, 229
installation command, 229
libraries, 227
setting up, 229–231

React testing library, 267, 268
Real-time validation, 214, 215
Reconciliation, 8, 11, 110, 247
Recursion, 113, 116–118
reduce() method, 399

Redux, 36, 111, 187
selectors, 254, 255
setting up

connecting app, 393, 394
creating retail slice, 391–393
creating store, 390

state management, 389
Redux Toolkit, 183, 184

configuring store, 189
connecting React components, 

191, 192
vs. context API, 193
creating slice, 188, 189
features, 187–191
install dependencies, 187
providing store, 190
shopping cart

building component, 197–201
configuring store, 196
creating cart slice, 194, 196
providing store, 196, 197

streamlines, 187
Regression prevention, 265
Reliability, 265, 338
Rendering elements

arguments, 71
definition, 71
efficient, 73
multiple element, 72, 73
single element, 72

Render props, 364–366
vs. HOCs, 366

replaysSessionSampleRate, 333

INDEX



420

Responsive design techniques, 
144, 161–164

Responsive frameworks, 162
Responsive images, 258
Responsiveness, 144
REST APIs, 337

Axios, 342–344
error handling, 344, 346
fetching data with fetch, 339, 

341, 342
Retail app, 389

adding mock data, 381, 382
building core pages and 

components
home page, 384
product card, 385
product details 

page, 387–389
checkout with stripe (see Stripe)
deployment, 406–408
features, 377
folder structure, 379, 380

reusability and 
scalability, 381

organizing product images, 
383, 384

project setting up
initializing react app, 378
installing required 

dependencies, 379
routing, 404–406
source code, 378 See also Redux

Retail slice, 391–393
Retail store application, 19

Retry logic, 344, 346
Reusability, 133, 134, 141
Reusable components, 136
Reusable functions, 99, 100
Reusing styles, 164
Robust navigation system, 229
Role-based access control 

(RBAC), 288–291
Route matching, 232
Routing, 227, 229, 404–406

error handling, 239, 241
lazy loading, 237–239
and navigation features, 227
nested routes, 234–236
page implementations, 243–245
protected routes, 236, 237
SPAs, 228, 229
structure, 241  

See also React Router

S
Sanitization, 284, 285
SASS, see Syntactically Awesome 

Style Sheets (SASS)
screen.getByText function, 271, 272
Security

API requests
data protection, 293–295
HTTPS, 291
preventing CSRF attacks, 

292, 293
tokens, 292

authentication, 287, 288

INDEX



421

concerns, 281
dependency management, 

295, 296
deployment, 296, 297
disabling source maps, 297
RBAC, 288–291
React components

escaping output, 285–287
user input sanitization, 

284, 285
risks, 282, 283
testing, 297–299
vulnerabilities, 281

Selectors, 254, 255
Semantic HTML elements, 303
SendGrid, 339
Sensitive data exposure, 283
Sentry, 318, 331–334
Sentry.captureException(), 333
setCount function, 175
setData() function, 342
setTheme function, 186
Shopping cart page, 136–139
ShoppingCartPage component, 130
Shopping cart, Redux Toolkit

building component, 197–201
configuring store, 196
creating cart slice, 194, 196
providing store, 196, 197

shouldComponentUpdate, 171
Single-page applications (SPAs), 

227–229, 233
Single responsibility principle, 135
Snapshot testing, 274–276

Social security numbers 
(SSNs), 294

SonarQube, 297
Source maps, 296
SPAs, see Single-page 

applications (SPAs)
SQL Injection (SQLi), 299
SSNs, see Social security 

numbers (SSNs)
State

best practices, 57, 58
class components, 53, 55
functional components, 52, 53
vs. props, 56

Stateless components, 133, 134
State management, 85, 104, 

141, 205
best practices, 193, 194
event handling, 89
libraries, 111
nested state, 254
in React, 183, 184
Redux, 389
selectors, 254, 255
useState hook, 174

Static analysis tools, 297, 298
Stripe, 337, 339

cart page, 395–399
creating checkout form, 401–403
creating checkout page, 399–401
installing dependencies, 394
libraries, 351
payment gateway, 351, 354
provider, 351

INDEX



422

Stubbing, 276–279
Styling, 86

best practices, 164, 165
CSS-in-JS libraries, 152–155
CSS modules, 149–151
frameworks, 159–161
inline, 147–149
intuitive design, 143
libraries, 144
preprocessors (SCSS/

SASS), 155–159
in React applications, 143–145
responsive design, 161–164
traditional CSS, 145–147
web development, 143

Suspense component, 238, 241
Synchronization, 204
Syntactically Awesome Style  

Sheets (SASS), 155

T
Tailwind CSS, 143, 159–163
TaskItem.jsx, 86
TaskList.jsx, 86
Testing

advantages, 265
E2E tests, 272–274
environment, 267–269
integration, 271, 272
mocking and stubbing, 276–279
pyramid, 266
requirements, 267
snapshot, 274–276

tools, 265
unit, 269–271

Testing accessibility
automated tests, 308–310
tools, 307

ThemeContext, 186
ThemeProvider, 154, 186
Theming support, 154, 155
Third-party libraries, 276, 296

Formik, 216–218
React Hook Form, 218, 219

Third-party services
examples, 338, 339
reasons, 338

Timer component, 176–179
toggleActivity function, 61
Toggle button, 92, 99
toggleUserActivity function, 58, 62
toJSON() method, 276
toLocaleTimeString() method, 178
tracesSampleRate, 333
Traditional CSS

advantages, 146
definition, 145
disadvantages, 146, 147
external stylesheets, 145

Tree shaking, 319
Trigger deployment, 330

U
Uncontrolled components, 205, 

206, 369–371
Unit testing, 266, 269–271

INDEX



423

Unmounting phase, 169, 171, 172
Unnecessary re-renders

functional component, 249
React.memo, 249, 250
useCallback and useMemo, 

250, 252
Updating phase, 168, 171
useCallback, 250, 252
useEffect hook, 172, 174, 178
useLayoutEffect hook, 175
useMemo, 250, 252
User dashboard, 81–86
useRef hook, 175
User experience (UX), 143
UserHeader.jsx, 86
User interface (UI), 8, 203
User list application, 58–63
UserProfile component, 6
useState hook, 174, 175, 178
Utility functions, 269
Universally unique identifier 

(UUID), 110

V
Validation

asynchronous, 224
errors, 223
form (see Form validation)
logic, 212
rules, 216
techniques, 203

validationSchema, 217
Vercel, 317, 323–325

Virtual DOM, 2, 3
benefits, 9, 10
definition, 8
UI and, 8
visualizing process, 10

Virtualization, 122, 256, 257
lists, 121, 122

Visual appeal, 144
Visual impairments, 303
Visual Studio Code (VS Code), 35
Vite, 319

completion message and 
commands, 32

vs. create-react-app, 34
displayed in browser, 34
installing and creating 

project, 31, 32
running development 

server, 32, 33

W, X, Y
waitFor function, 279
Web browsers, 8
Web Content Accessibility 

Guidelines (WCAG), 
144, 302

Webpack, 150, 151, 319
Wildcard route, 239, 240, 245
“Wrapper hell” problem, 364

Z
Zustand, 111

INDEX


	Table of Contents
	About the Author
	About the Technical Reviewers
	Introduction
	Chapter 1: Introduction to React
	What Is React?
	A Brief History of React
	Why Use React?
	Component-Based Architecture
	Benefits of Component-Based Architecture
	Complex Applications Made Simple

	Virtual DOM for Performance
	What Is the DOM?
	What Is Virtual DOM?
	Benefits of the Virtual DOM
	Visualizing the Process

	Declarative Syntax
	Declarative vs. Imperative
	Why Declarative Syntax Is Important

	React Hooks
	Why Are Hooks Important?
	Core Concepts of React Hooks
	Custom Hooks

	React vs. Other Frameworks
	The Structure of a React Application
	What You’ll Learn in This Book
	Summary

	Chapter 2: Setting Up Your Development Environment
	Installing Node.js and npm
	Download and Install Node.js
	Verify Installation
	Updating Node.js and npm

	Creating a React App with create-react-app
	Create Your First React App
	What create-react-app Does
	Understanding the Project Structure
	Run the Development Server
	Stopping the Server

	Alternative Setup with Vite
	Install Vite and Create a Project
	Run the Vite Development Server
	Comparison Between Vite and create-react-app

	Essential Tools for React Development
	Visual Studio Code (VS Code)
	Recommended Extensions for React Development

	Setting Up Git for Version Control
	Download and Install Git
	Initial Git Configuration
	Initialize a Git Repository
	Basic Git Workflow

	Summary

	Chapter 3: Components, Props, and State
	Introduction to Components
	Types of Components in React
	Functional Components
	Class Components

	Props: Passing Data to Components
	State: Managing Component Data
	Using State in Functional Components
	Using State in Class Components

	Differences Between Props and State
	Best Practices for Using Props and State
	Example: Building a Simple User List Application
	Summary

	Chapter 4: JSX and Element Rendering
	Introduction to JSX
	Basic Rules of JSX
	Rendering Elements
	Rendering a Single Element
	Rendering Multiple Elements
	React’s Efficient Rendering

	Embedding JavaScript Expressions in JSX
	Embedding Variables
	Conditional Rendering
	Calling Functions

	Using Props for Dynamic Rendering
	Advanced JSX Techniques
	React Fragments for Grouping Elements
	Inline Styling in JSX
	Applying CSS Classes in JSX
	Using JSX Spread Attributes
	Conditional Rendering with the Logical AND (&&) Operator
	Rendering Lists of Elements

	Example: Building a User Dashboard Application
	Features

	Summary

	Chapter 5: Handling Events and Conditional Rendering
	Introduction to Event Handling
	Event Handling in Functional Components
	Event Handling in Class Components
	Passing Parameters to Event Handlers
	Why Use Arrow Functions for Passing Parameters?
	Passing Multiple Parameters

	Conditional Rendering
	Using if Statements
	Using the Ternary Operator
	Using the Logical && Operator

	Creating Reusable Functions for Component Behavior
	Example: Building an Interactive Login Form
	Summary

	Chapter 6: Lists and Keys
	Introduction to Lists in React
	Rendering Lists in React
	Rendering Objects with Lists

	Understanding Keys in React
	Dynamic Lists: Adding, Removing, and Updating Items
	Nested Lists and Complex Data Structures
	Recursive Rendering for Deeply Nested Structures
	Best Practices for Managing Lists and Keys

	Advanced Techniques: Lazy Rendering and Virtualized Lists
	Lazy Loading in React
	Virtualization of Large Lists
	When to Use Lazy Loading and Virtualization

	Example: Product List with Add-to-Cart Functionality
	Summary

	Chapter 7: Thinking in Components
	Understanding Components
	Why Adopt a Component-Based Approach?
	Steps to Think in Components
	Types of Components
	Functional Components
	Class Components

	Reusability and Composition
	Best Practices for Component Design
	Example: Designing a Shopping Cart Page
	Header Component
	Product Component
	ProductList Component
	CartSummary Component
	Composing the Page

	Common Challenges When Thinking in Components
	Summary

	Chapter 8: Styling Your Application
	Importance of Styling in React Applications
	Adding Styles Using Traditional CSS
	Pros of Using Traditional CSS
	Cons of Using Traditional CSS

	Inline Styling in React
	Pros of Inline Styling
	Cons of Inline Styling

	CSS Modules
	How CSS Modules Work
	Pros of CSS Modules
	Cons of CSS Modules

	CSS-in-JS Libraries
	Dynamic Styling
	Theming Support

	Using Preprocessors (SCSS/SASS)
	Features of SCSS/SASS
	How to Use SCSS/SASS in React

	Styling with Frameworks (Bootstrap, Tailwind)
	Responsive Design Techniques
	Best Practices for Styling
	Summary

	Chapter 9: Lifecycle Methods and Hooks
	Understanding the Component Lifecycle
	Lifecycle Methods in Class Components
	Mounting Phase
	Updating Phase
	Unmounting Phase

	Hooks for Functional Components
	Using useEffect for Side Effects
	Managing State with useState

	Advanced Hooks for Lifecycle Scenarios
	Example: A Timer Component with Cleanup
	Common Challenges and Solutions
	Best Practices for Lifecycle Management
	Summary

	Chapter 10: Managing State with Context and Redux
	Understanding State Management in React
	React Context API
	Introduction to Redux Toolkit
	Core Features of Redux Toolkit

	Connecting Redux Toolkit with React Components
	Comparing Context API and Redux Toolkit
	Best Practices for State Management
	Example: Building a Shopping Cart with Redux Toolkit
	Step 1: Define the Cart Slice
	Step 2: Configure the Store
	Step 3: Provide the Store to the Application
	Step 4: Build the Shopping Cart Component

	Summary

	Chapter 11: Form Handling and Validation
	Controlled vs. Uncontrolled Components
	Controlled Components
	Uncontrolled Components

	Handling User Input
	OnChange Event
	OnSubmit Event
	Combined Event
	Event Object

	Form Validation
	Client-Side Validation
	Real-Time Validation

	Using Third-Party Libraries
	Formik
	React Hook Form

	Example: Checkout Form
	Summary

	Chapter 12: Routing and Navigation
	Understanding Routing in SPAs
	How SPAs Handle Routing

	Setting Up React Router
	Core Concepts of React Router
	Route Matching
	Navigating Between Pages

	Nested Routes
	Protected Routes
	Lazy Loading Routes
	Error Handling
	Example: Simple Blog Navigation with React Router
	Page Implementations

	Summary

	Chapter 13: Optimizing Performance
	Understanding React’s Rendering Behavior
	Symptoms of Bottlenecks
	Tools for Identifying Bottlenecks

	Preventing Unnecessary Re-renders
	React.memo
	useCallback and useMemo

	Code Splitting and Lazy Loading
	Optimizing State Management
	Avoiding Deeply Nested State
	Using Selectors in Redux

	Optimizing Large Lists
	Virtualization

	Optimizing Images and Media
	Lazy Loading Images
	Responsive Images

	Network Performance
	Caching with React Query
	Prefetching Data

	Summary

	Chapter 14: Testing Your Application
	Why Testing Matters
	The Testing Pyramid

	Setting Up a Testing Environment
	Configuring Jest
	Configuring React Testing Library
	Configuring Cypress

	Unit Testing
	Integration Testing
	End-to-End Testing
	Snapshot Testing
	How Snapshot Testing Works

	Mocking and Stubbing
	Mocking API Calls

	Summary

	Chapter 15: Security Best Practices
	Common Security Risks in React Applications
	Cross-Site Scripting (XSS)
	Cross-Site Request Forgery (CSRF)
	Sensitive Data Exposure
	Insecure API Endpoints

	Securing React Components
	Sanitizing User Inputs
	Escaping Output

	Authentication and Authorization
	Secure Authentication
	Role-Based Access Control (RBAC)

	Securing API Requests
	Using HTTPS
	Securing Tokens
	Preventing CSRF Attacks
	Example: CSRF Token Implementation

	Data Protection
	Encryption
	Masking Sensitive Information

	Dependency Management
	Secure Deployment
	Security Testing
	Static Analysis Tools
	Penetration Testing
	Conducting Penetration Testing

	Summary

	Chapter 16: Accessibility and Internationalization
	Introduction to Accessibility and Internationalization
	Implementing Accessibility in React
	Testing for Accessibility
	Writing Automated Tests for Accessibility

	Internationalization (i18n) in React
	Setting Up react-i18next

	Summary

	Chapter 17: Deployment and Continuous Integration
	Preparing Your React App for Deployment
	Optimizing for Production
	Setting Up Environment Variables
	Creating a Build

	Deployment Platforms
	Popular Deployment Platforms
	Deploying to Netlify
	Deploying to Vercel

	Continuous Integration and Deployment (CI/CD)
	What Is CI/CD?
	Setting Up CI/CD with GitHub Actions
	Automating Tests and Builds

	Monitoring and Error Tracking in Production
	Setting Up Sentry for Error Tracking

	Summary

	Chapter 18: Integrating Third-Party Services and APIs
	Introduction to Third-Party Services
	Why Use Third-Party Services?
	Examples of Popular Services

	Working with REST APIs
	Fetching Data with fetch
	Using Axios for Fetching Data
	Handling API Errors Gracefully

	GraphQL Integration
	What Is GraphQL?

	Payment Gateway Integration
	Integrating Firebase with React
	Summary

	Chapter 19: Advanced Component Patterns
	Higher-Order Components (HOCs)
	Use Cases and Limitations

	Render Props
	Comparing Render Props with HOCs

	Compound Components
	Controlled and Uncontrolled Components
	Custom Hooks
	Summary

	Chapter 20: Building a Real-World Retail Store App
	Setting Up the Project
	Folder Structure
	Why This Structure?

	Adding Mock Data
	Creating the Mock Data File

	Organizing Product Images
	How Mock Data Fits into the App

	Building Core Pages and Components
	Product Page (Home)
	Product Card
	Product Details Page

	State Management with Redux
	Setting Up Redux
	1. Creating the Store
	2. Creating the Retail Slice
	3. Connecting Redux to the App

	Checkout with Stripe
	1. Installing Stripe Dependencies
	2. Cart Page
	3. Creating the Checkout Page
	4. Creating the Checkout Form

	Routing
	Adding Routes

	Deployment
	1. Building the App
	Build the App

	2. Deploying to Netlify
	Step 1: Sign Up/Log In to Netlify
	Step 2: Create a New Site
	Step 3: Manual Deployment
	Step 4: Configure the Domain (Optional)

	3. Testing the Deployed App

	Summary

	Index



